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Motivation: Mass on event-by-event basis

Propagation:

● Magnetic fields deflects UHECR in dependence of 

rigidity R ~ E/Z ( typically Z = 1 - 26)

● Type of the particle determines the maximal distance 

(horizon) to the potential source
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M.Unger, G. Farrar, ICRC2017

N. Globus, A. Fedynitch, R. Blandford, 2022

Large impact of Galactic magnetic fields:

For example particle E=60 EeV and Z=?: 

arrived from outside galaxy points to 

Backtracking of particles for different models of the coherent GMF

Z=1 Z=2

Z=3 Z=6

Source properties:

● Acceleration at the source: maximum rigidity is determined by acceleration

● Mass composition at the source 



Mass reconstruction
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● Fluorescence Detector (FD):

○ Directly observe Xmax as an estimator for mass composition

○ Limited statistics with duty cycle 10%

● Surface Detector (SD):

○ Large statistics with duty cycle 100%

○ Can be used to extract primary mass via a number composition-related 

observables

○ Extraction requires complicated analysis techniques with feature engineering

○ DNN can automatically extract the most relevant features from the raw SD data

Fluorescence Detector

Surface Detector



DNN approach
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Fluorescence Detector

Surface Detector

Deep Neural Network (DNN) vs. Standard reconstruction:

● Learns complex non-linear patterns vs. physics-based constructed features

● More robust to various uncertainties and shower-to-shower fluctuations

● Generalize well to new events, allowing for reliable estimation on an event-by-event basis

● Can use all shower data (time traces) vs. integral features (arrival times, total signal)

○ can extract complex features (Xmax, Rμ, A)                ⟸ final objective

○ more accurate reconstruction ⇒ boosting statistics with relaxed quality cuts ⟸ this talk



Time traces of surface detectors 

Time traces: 1-4 segments of 128-bin time 

series of 20 ns x 2 channels (upper/lower) 
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Standard reconstruction uses:

1. geometry

2. arrival times

3. total signal

Time traces and surface detector footprint for highest 

registered event of TA E=244 EeV (Science 382, 903 (2023))

arrival times



Content of surface detector signals
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Mass composition information:

• Xmax information from electromagnetic component 

• Rμ (number of muons) information from the early part 

of the time trace (and early shower evolution)

TA SD array

● Arrival times → front curvature → shower direction and core position

● Total signal →  energy of primary particle

● Time trace  → front width and structure → development of

○ electromagnetic and muonic component

● Dynamics (time traces shape) of components encodes 

○ complex feature 

○ additional information for energy, direction, core position 

K. Fujita, 2024

0.5 km from core

0.93 km from core

TA MC simulations
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AixNet DNN architecture

8

Time tracei (7, 7, 128, 2)

Conv3D, kernel(1x1xk),  stride (1, 1, s) x3

Time features (7, 7, 10)m

Stot,i, tarr,I , Ci Xi, Yi , Zi (7, 7, 6)

Concatenate (7, 7, 16)m

SepConv2D (3x3) (7, 7, 16)m

Concatenate (7, 7, 32)m

x7

Flatten (7x7x 2048)m

FC (11 of features to learn)m

● Time feature extraction DNN consists of 3 layers of 1D 

CNN

○ Kernel size and stride should be adjusted for each layer

○ Typically: kernel size = 7, and stride = 4

○ Use 2 time traces

● Spatial correlation DNN consist of 7 layers Depthwise

Separable Convolution CNN:

○ performs spatial convolutions (2D) separately on each of 

7x7 “feature” map

○ correlating all feature maps pixel-wise

○ Skip (residual) connections concatenate output with 

input of previous layer

● Fully-connected layer (FC) transforms flattened features to 

predicted quantities:
○ E(1), core axis (3), core position(2), Xmax(1), mass vector(4)

AixNet was originally developed by Auger collaboration 

(M. Erdmann, J. Glombitza, D. Walz, 2018):



Event’s tiles
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7x7 tile

● Each event is represented as NxN tile of detectors

● 7x7 vs 9x9 have similar results

○ Use 7x7 to save memory and calculation time 

● Tile is centered on detector with largest integrated signal

● Mask central detector (by zeros) because of:

○ strongest signal → saturation

○ closest to the core → MC might not correctly model signal
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● CORSIKA 7.3500 simulations

● QGSJet-II-04 

● p, He, N, Fe (0.5 M each)

● 1000 x 26 x 4 x 20 ~ 2 M events

○ 1000 Corsika showers per energy bin

○ 26 energy bins

○ 4 elements

○ 20 reshuffling per shower

● Energies: (1 EeV, 300 EeV), E^-1 distribution, 26 bins

● Zenith angles: < 70 deg, isotropic distribution

● Training/validation: 0.9/0.1

● Test set ~ 0.5 M

● Standard spectral quality cuts

MC data set details

Cut Efficiency

, %

Combined, 

%

NSD ≥ 5 89.82 89.82

θ < 45° 59.08 52.75

Dborder≥ 1200 m 71.28 38.43

χ²G/d.o.f. < 4, 

χ²LDF/d.o.f. < 4

80.64 34.07

(σ²θ+ sin²θ σ²φ)(1/2) < 

5°

87.43 31.60

σS800/S800 < 0.25 69.35 29.34

Spectral quality cuts
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SD energy reconstruction

Quality cuts 

Offset

Resolution

DNN reconstruction 



SD energy reconstruction offset
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● Reconstruction is applied to:

○ MC simulations with QGSJet II-04

○ events passed quality cuts 

● The reconstruction offset depends on interaction model and primary mass and should be fixed 

by calibration against hybrid events (intrinsically correct interaction and composition)

● DNN trained on QGSJet II-04:

○ tends to center around zero bias

○ energy offsets -6%  – +2.5% (at 200 EeV)

○ offset depends on mass of primary with spread 8.5 %

○ curves are ordered from proton (red) to iron (blue) 



Energy offsets for other models
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Comparison with QGSJet II-03

● For interaction models different from training model the offset changed no more than 7%

● Offsets between p and Fe are within 10% and ordered the same way

Comparison with Sibyll 2.3d



Energy offsets: DNN vs standard reconstruction
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● Standard reconstruction is adjusted to QGSJetII-03 proton MC simulations

● Offset difference between p and Fe for DNN reconstruction are smaller than in standard 

reconstruction:

○ DNN still has composition dependent offset but adapts to it better than standard reconstruction 



SD energy resolution
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● The same events as for offset (same caveats)

● Resolution (spread) does not depend on offset

● Resolution weakly depends on composition

● DNN energy resolution:

○ 8% - 25%

○ He, N, Fe: slightly better than protons



Energy resolution for other models 
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Comparison with QGSJetII-03 Comparison with Sibyll 2.3d

● Resolution is very similar between models with weak dependence on type of primary



SD energy resolution: DNN vs Std
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● Resolution is more difficult to take into account than offset, i.e. the smaller the 
resolution the better

● DNN notably improves resolution compared to standard reconstruction



DNN and quality cuts
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DNN improved resolution will allow

● Search for more relaxed quality cuts while maintaining the good resolution of the 

existing reconstruction  - increasing statistics

DNN reconstruction on events that pass quality cuts and on the events that do not (“other”)



Directional reconstruction
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● Both reconstructions improves with increasing 

mass

● On average DNN reconstruction resolution is 

slightly worse than standard reconstruction:

○ 0.1° for protons 

○ 0.2° for iron

● At low energies DNN is slightly better for 

protons



Core position resolution
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● Reconstruction after quality cut

● Standard reconstruction resolution:

○ 100 – 175 m

● DNN core resolution for E>3 EeV :

○ 50 – 125 m

● Similar for all elements

● Core resolution improves 1.5x - 2x using DNN

● DNN reconstruction equally good in parallel and perpendicular directions of 

shower axis projection  



TA Hybrid data
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Hybrid data:

● Detected both SD and FD

● 9 years: 2008-05-27 to 2017-11-28

● Total 3656 events, 

● After quality cuts 911 events



Performance on TA Hybrid data
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Hybrid data:

● Detected both SD and FD

● 9 years: 2008-05-27 to 2017-11-28

● Total 3656 events, 

● After quality cuts 911 events
DNN works well on real TA data, with results similar to

standard reconstruction



Calibration to FD 
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DNN * 1/1.06 ⇒
DNN calibrated to FD

● Linear regression fit: EDNN = s* Ehybr, bias = s - 1

● With offset 6% for DNN, the calibration factor for given DNN is s = 1.06

● In further application energy estimated with E = EDNN/1.06



Energy resolution improvement
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Original DNN Original DNN + Features from Std

● Addition of MLP on features from Standard reconstruction (curvature, energy, direction) improves energy 

resolution to ~10-20%



Directional reconstruction improvement
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Original DNN Original DNN + Features from Std

● Addition of MLP on features from Standard reconstruction (curvature, energy, direction) improves angular 

resolution – DNN angular resolution becomes better than in standard reconstruction



Conclusions
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● DNN improves the accuracy of Standard reconstruction for energy resolution, direction, 

and core position on events with quality cuts.

● Reasonable performance of DNN on events that haven’t passed quality cuts indicates 

that DNN could perform well on a larger dataset with more relaxed quality cuts

● Next steps include developing a new set of quality cuts and accuracy metrics for the 

DNN to effectively utilize available data while maintaining the accuracy of the 

reconstruction
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