

A HY A HY EVE Geore Work

A HYBRID MACHINE LEARNING-LIKELIHOOD APPROACH TO EVENT RECONSTRUCTION FOR IACTS

Georg Schwefer, Dan Parsons, Jim Hinton for the CTA Consortium

Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles

Bartol Research Institute (Online), 28.01.2025

																0	0	0	0	
														•	۰	0	0	0	0	
														۰	0	0	0	0	0	
															0	0	0	0	0	
															0	0	0	0	0	
																0	0	0	0	
												•		•	0	0	0	0	0	
												0		•	o	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
						0	0	0	0	0	0	0	0	0	0	0	0	0	0	

IACT EVENT RECONSTRUCTION

LIKELIHOOD-FITTING RECONSTRUCTION

How good is the ImPACT likelihood?

X

CHARGE PROBABILITY DISTRIBUTION FLASHCAM-MST

NEURAL RATIO ESTIMATION ARXIV:2208.10166, ARXIV1903:04057

Goal: Estimate likelihood $p(x|\theta)$

- $\hat{x=}$ Measured Pixel Charge
- $\hat{ heta} \doteq$ Telescope and shower parameters

For optimization for heta

Likelihood-to-evidence (LtE) ratio

Trick: LtE ratio from binary classifier function $d(x, \theta)$

$$\frac{p(x|\theta)}{p(x)} \stackrel{\text{\tiny Bayes}}{=} \frac{p(x,\theta)}{p(x)p(\theta)} = \frac{d(x,\theta)}{1-d(x,\theta)} \quad \text{with } d(x,\theta) = \frac{p(x,\theta)}{p(x,\theta) + p(x)p(\theta)}$$
Approximate with
Binary Classifier Neural Network

LEARNED CHARGE PROBABILITY DISTRIBUTION FLASHCAM-MST

Schwefer, Parsons, Hinton 2024

RESOLUTION CURVES

68% containment radius in deg

 10^{-1}

 10^{-2}

 10^{-1}

- CTA south alpha array: 14 MSTs + 37 SSTs
- On-axis gamma rays at 20 deg zenith

Angular Resolution

CTA Prod5 Official

 10^{2}

Hillas

ImPACT

FreePACT

Energy Resolution

Sub-arcminute resolution above 10 TeV

True Energy in TeV

 10^{1}

Schwefer, Parsons, Hinton 2024

 10^{0}

SUMMARY

FreePACT: Hybrid machine learning-likelihood reconstruction for IACTs

- Likelihood reconstruction is a proven method for IACTs
- Idea: Replace analytical likelihoods with proxy from Neural Ratio Estimation
- Significant gain in energy and angular resolution + operational advantages
- Taking this further
 - Goodness-of-fit for improving g/h separation
 - Using image timing in reconstruction

Check out the paper: Schwefer, Parsons, Hinton 2024