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Motivation
❖ Overarching Motivation: Tackling Gamma/Hadron separation problem in an observational 

data-driven manner (previous successes have been based on simulated events)
➢ Previous efforts have used supervised ML methods trained on simulations (Shilon+18, 

Miener+22, Spencer+21 Thesis); 
➢ Generalized Simulation → Data application can be challenging (domain adaptation can be done)
➢ Gamma : Hadron ratio in observational data is heavily imbalanced (1:1000 - 1:10000).

■ Gammas can be perceived as “unusual” (or anomalous) in a pool of hadrons.
❖ Unsupervised Deep Learning: A promising (alternative) approach to learn features in a 

data-driven way. They are also useful for doing anomaly detection!
➢ Autoencoders – focused on image-to-image reconstructions
➢ Generative Adversarial Networks – focused on generation of images that are 

representative; (e.g., Elflein+23) 
➢ Transformers (and more…)

Generated images using GAN from 
Elflein+23

Also see slides from Glombitza and Vuillaume talks (Tue)



Outline
❖ Generative Adversarial Networks (GANs) are established method to learn image-level features in 

a data-driven way (Goodfellow+14):
➢ However - Standard GAN framework poses following issues

■ Training instability: This motivates a new variant Wasserstein GAN (wGAN).
■ Not grounded by physical parameters: To be useful for domain applications, requires 

incorporation of relevant physical parameters, motivating Conditional wGAN (CwGAN).
■ Previous efforts using CwGANs have been with simulated data.

➢ Our goal: Train in a data driven manner a CwGAN that ultimately lead us to effective 
gamma/hadron separation

❖ An Intermediate (useful) by-product of CwGAN: Fast Generation of Realistic Data-Driven 
Stereoscopic Shower Images - this is the focus of my talk

❖ Conclusions of our CwGAN experiments!



Gamma-Hadron Separation: A Critical Scientific Analysis Step

VERITAS
The Very Energetic Radiation Imaging Telescope Array System

1. Atmospheric showers from 
gamma rays and cosmic rays 
create distinct patterns on 
imaging.

2. We use data from the VERITAS 
observatory



Camera:
499 PMTs
3.5 deg FOV
Hexagonal Pixels

T1 T2 T3 T4

Schematic Overview of the VERITAS Data & Derived Parameters

Hillas Parameters are effectively 
image moments quantifying the 

captured shower

We specifically use 
stereoscopic, integrated 
images of all 4 telescopes 
& their corresponding 
Hillas Parameters



Schematic of our overarching goal: Data-driven learning of shower-image features

Unsupervised
ModelPhysically relevant 

parameters
Θ = [size, Hillas Params]

Stereo-Image | Θ

P(Gamma | event & Θ)

* cartoon feature space

1. We expect that an unsupervised approach helps learn generalized diversity of shower features.
2. We anticipate the data to govern the model on what features are representative.

Our goal is to create a model – trained on stereoscopic images alongside physically-relevant parameters        
– that could learn a lower-dimensional representation which can help better distinguish Gamma vs. Hadrons.



● Crab Nebula (SN 1054)
● ~6500 Lightyears away
● Bright and steady source in TeV.
● Calibration standard for IACTs.

We use VERITAS observational data of the Crab Nebula for our Deep Learning training

…

● 1 Crab Run
● ~120K events
● Size (per telescope) > 100

Data Used for our Proof-of-Concept Training



T1 T2 T3 T4

How we make VERITAS data compatible with deep learning tools 

Hillas Parameters 
per Telescope

We used cleaned image(s) + 
Hillas parameters in our work

Hex to rectangular 
pixel interpolation

Noise cleaning

Normalization per 
Tel

[0,1]

1. We project native hex pixels onto a 96x96 rectangular grid using bi-cubic interpolation.
2. We normalize per-telescope image such that the native charge distribution is conserved.
3. Normalizing scheme makes a BIG DIFFERENCE in training outcomes!!



● An established unsupervised feature learning framework

● A GAN, under the hood is comprised of two CNN-based frameworks – Generator & Discriminator

● It learns generalized feature representations described by the data.

● One can use the representations to generate realistic synthetic data and finding rarely occurring samples

Feature 
Vector

Example synthetically Generated Images

Generative Adversarial Networks (GANs): A good architecture for data-driven feature learning



Traditional GANs suffer from training instabilities

Training progress

Training progress

1. The Generator can cheat the Discriminator by generating one particularly “good” sample (mode collapse)
2. The learning landscape can become “too volatile” resulting in the Generator to learn-unlearn iteratively.



Conditional Wasserstein GAN (CwGAN): Our Chosen Framework for Learning image-level shower features

CwGAN

Stereo-Images | Θ

Physically relevant 
parameters

Θ = [size, Hillas Params]

CwGAN is a variant of classical GANs, which can be used for parameter-guided image generation



Conditional Wasserstein GAN (CwGAN): Our Chosen Framework for Learning image-level shower features

Stereo-Images | Θ

Generator

Discriminator

Physically relevant 
parameters

Θ = [size, Hillas Params]

The main components of a CwGAN are a Generator & Discriminator that are trained jointly

Let's unpack what CwGAN means in the next couple of slides!



Conditional Wasserstein GAN (CwGAN): Our Chosen Framework for Learning image-level shower features
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Generator takes in a feature vector (D = 256) and generates a stereoscopic image



Conditional Wasserstein GAN (CwGAN): Our Chosen Framework for Learning image-level shower features

Stereo
Image

Conv2D LeakyReLU

Scalar 
scoreFl

at
te

n

FC

Conv2DT LeakyReLU

Sigmoid Stereo
Image

La
te

nt
 V

ec
to

r (
z)

Fu
lly

-C
on

ne
ct

ed
 L

ay
er

 
(F

C
)

Gen
era

tor

Disc
rim

ina
tor

Generator takes in a feature vector (D = 256) and generates a stereoscopic image

Discriminator takes in a stereoscopic image and outputs an unbounded scalar value



Conditional Wasserstein GAN (CwGAN): Our Chosen Framework for Learning image-level shower features
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Wasserstein Distance = 
Work done to bring two distributions together

Discriminator Score

The training objective of a wGAN is to drive the Real and Generated distributions to be similar

Discriminator



5 Randomly Selected 
Real Images

5 Randomly 
Generated Images

T1 T2 T3 T4

We were able to successfully train a wGAN (unconditional) to generate stereoscopic shower images 

z Trained
Generator Hillas correlation plots 

for both real and 
generated images
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Conditional Wasserstein GAN (CwGAN): Our Chosen Framework for Learning image-level shower features
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Physically relevant 
parameters

(Θ)
In CwGAN, the only 

addition is the injection of 
Θ into the networks’ 

trainable layers



5 Randomly Chosen Real Images

Random Generated Images 
conditioned on Θ

Our CwGAN model generates qualitatively promising stereoscopic shower images

z Trained
Generator

Θ



An Intermediate Validation Challenge: How to map from a given image to feature vector & parameters?

Real or Generated 
Stereoscopic Image
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Given an image, our CwGAN framework 
is not equipped to map onto its 
corresponding feature space.

1. So, we trained a Validator model such that it can predict z from a stereoscopic image.
2. Simultaneously, we also require it to perform regression on 𝛩.
3. Validator model is trained by holding the Generator and Discriminator fixed!



Θ of Real Images z

Θ
Generated 

Images Θ of Gen ImagesValidator

Our CwGAN model-generated images demonstrate quantitative self-consistency

Generator

* Note systematic 
difference



Real Images

Random Generated Images

Reconstructed 
Imagesz

Θ
Generated 

Images
Validator

Generator
Generator

Our Validation model is OK, but could be better! – It will be when trained on more balanced data

z



Conclusions
1. We have successfully demonstrated stereoscopic image 

generation with a CwGAN architecture trained on real 

VERITAS data

2. Next steps are to infer on simulated data to determine 

probabilistic gamma/hadron separation and parameter 

regression

3. Could also use architecture to train on simulations for fast 

stereoscopic image generation.

Generator

Discriminator

Validator

Simulated 
Data



Backup Slides
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https://docs.google.com/file/d/1UPhyokQWZylK61jUZEfR9zYSziG2dPtl/preview


Cherenkov radiation emitted by the cascade of secondary 
particles is captured using Photomultiplier Tubes. Properties 
of the primary are reconstructed with the help of Monte Carlo 
simulations of EAS and the corresponding Cherenkov
 image.

Stereoscopic imaging: 
1. Better reconstruction of direction, core 
location, and energy of primary with multiple 
telescopes
2. Elimination of fluctuations in low energy 
range due to night sky background and muons 
by applying coincident trigger criteria

Imaging Atmospheric Cherenkov Telescope (IACT)

Credit: CTA collaboration

Credit: Canestrari, Rodolfo. (2011). Reflecting surfaces of 
novel Cherenkov telescopes. SPIE Newsroom. 
10.1117/2.1201105.003727. 

 



Extensive air 
shower (EAS)

Both gamma-rays and 
cosmic rays (protons) 
produce EAS on 
entering the 
atmosphere.

irregular

regular

There are about 1000-10000 
cosmic-ray-initiated showers for every 
gamma-ray initiated one.

Gamma-Hadron Separation: A Critical Scientific Analysis Step



Credit: VERITAS 
collaboration

VERITAS
The Very Energetic Radiation Imaging Telescope Array System

● An array of four 12m-diameter imaging atmospheric Cherenkov telescopes
● Located at the Fred Lawrence Whipple Observatory in southern Arizona
● Energy range: 85 GeV to >30 TeV                    Energy resolution: 17%        
● Angular resolution: ~0.08 @ 1 TeV                  Source location accuracy: error < 50 arcsec 
● Sensitivity: 1% Crab in ~25h 



Deep Generative Learning as an avenue for data-driven learning of shower-image features

Generative
Model

Generated Images

P(Gamma | event & Θ)

Shower Simulations Generative Modeling using 
observational data

Physically relevant 
parameters

Θ = [size, Hillas Params]

Feature 
Model

Stereo-Image | Θ



Feature extraction

Convolutional Neural Networks (CNNs) as feature extraction modules

These features can be used for:
1. Supervised classification
2. Unsupervised grouping/clustering


