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Motivation

<> Tackling Gamma/Hadron separation problem in an observational
data-driven manner (previous successes have been based on simulated events)
> Previous efforts have used supervised ML methods trained on simulations (Shilon+18,
Miener+22, Spencer+21 Thesis);
>  Generalized Simulation — Data application can be challenging (domain adaptation can be done)
> Gamma : Hadron ratio in observational data is heavily imbalanced (1:1000 - 1:10000).
m Gammas can be perceived as “unusual” (or anomalous) in a pool of hadrons.
% A promising (alternative) approach to learn features in a
data-driven way. They are also useful for doing anomaly detection!
> Autoencoders — focused on image-to-image reconstructions
> Generative Adversarial Networks — focused on generation of images that are
representative; (e.g., Elflein+23)
> Transformers (and more...) 1
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are established method to learn image-level features in
a data-driven way (Goodfellow+14):

> However - Standard GAN framework poses following issues
m Training instability: This motivates a new variant
m Not grounded by physical parameters: To be useful for domain applications, requires
incorporation of relevant physical parameters, motivating
m Previous efforts using CwGANs have been with simulated data.

> : Train in a data driven manner a CwGAN that ultimately lead us to effective
gamma/hadron separation
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: Fast Generation of Realistic Data-Driven
Stereoscopic Shower Images - this is the focus of my talk

<> of our CwGAN experiments!



Gamma-Hadron Separation: A Critical Scientific Analysis Step
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Camera:

499 PMTs

3.5 deg FOV
Hexagonal Pixels

/We specifically use
stereoscopic, integrated
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1.  We expect that an unsupervised approach helps learn generalized diversity of shower features.
2. We anticipate the data to govern the model on what features are representative.
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Unsupervised ., — P(Gamma | event & O)
Physically relevant Model
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© = [size, Hillas Params]

. * cartoon feature space

Our goal is to create a model — trained on stereoscopic images alongside physically-relevant parameters
— that could learn a lower-dimensional representation which can help better distinguish Gamma vs. Hadrons.




CRAB NEBULA

VISIBLE LIGHT

Data Used for our Proof-of-Concept Training

Crab Nebula (SN 1054)
~6500 Lightyears away
Bright and steady source in TeV.
Calibration standard for IACTs.

1 Crab Run
~120K events
Size (per telescope) > 100




We used cleaned image(s) +
Hillas parameters in our work

.::.
= ~
7 N
H?X t9 rectangl_JIar Hillas Parameters
pixel interpolation per Telescope
- J
e N
- < Noise cleaning
; N Y,
g Normalization per
Tel
0,1
\\ [0,1] 5

1. We project native hex pixels onto a 96x96 rectangular grid using bi-cubic interpolation.
2. We normalize per-telescope image such that the native charge distribution is conserved.
3. Normalizing scheme makes a BIG DIFFERENCE in training outcomes!!




e An established unsupervised feature learning framework
e A GAN, under the hood is comprised of two CNN-based frameworks — Generator & Discriminator
e It learns generalized feature representations described by the data.

e One can use the representations to generate realistic synthetic data and finding rarely occurring samples

o
=
.
o=
[—,
o=
oQ
ENESE
BNSES

discriminator

Feature

Vector ﬂ E B E

generator fakaidats " _
Example synthetically Generated Images




[

1.
2.

The Generator can cheat the Discriminator by generating one particularly “good” sample (mode collapse)
The learning landscape can become “too volatile” resulting in the Generator to learn-unlearn iteratively.
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CwGAN is a variant of classical GANs, which can be used for parameter-guided image generation
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The main components of a CWwGAN are a & that are trained jointly

Stereo-Images | ©

Physically relevant Generator

parameters EE——
© = [size, Hillas Params]

Discriminator

[ Let's unpack what CwGAN means in the next couple of slides!
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[ Generator takes in a feature vector (D = 256) and generates a stereoscopic image ]
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[ Generator takes in a feature vector (D = 256) and generates a stereoscopic image ]
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[ Discriminator takes in a stereoscopic image and outputs an unbounded scalar value ]




ﬁNasserstein GAN
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Flatten
FC

o (Generated)

Wasserstein Distance =
Work done to bring two distributions together
-

Generated
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Discriminator Score

distributions to be similar ]

[ The training objective of a wGAN is to drive the Real and
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[Conditional Wasserstein GAN
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Given an image, our CWGAN framework
is not equipped to map onto its
corresponding feature space.

Latent Vector (z)
|

Real or
Stereoscopic Image

1. So, we trained a Validator model such that it can predict z from a stereoscopic image.
2. Simultaneously, we also require it to perform regression on 6.

3. is trained by holding the Generator and fixed!
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© of Real Images
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We have successfully demonstrated stereoscopic image
generation with a CwGAN architecture trained on real
VERITAS data

Next steps are to infer on simulated data to determine
probabilistic gamma/hadron separation and parameter
regression

Could also use architecture to train on simulations for fast

stereoscopic image generation.
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® [7 GAN Lab: Play with Gene: &) X  +

< > C 25 poloclub.github.io/ganlab/

Play with Generative Adversarial Networks (GANSs) in your browser!

Data Distribution

GAN Lab ] AR °

Use pre-trained model
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Each dot is a 2D data sample: real samples; fake samples
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s represent d tor's classifications.
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Fork us on GitHub
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https://docs.google.com/file/d/1UPhyokQWZylK61jUZEfR9zYSziG2dPtl/preview
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7 -ray enters the

atmosphere

Electromagnetic cascade

0.1 km? “light pool”, a few photons per m?.
Credit: CTA collaboration

Cherenkov radiation emitted by the cascade of secondary
particles is captured using Photomultiplier Tubes. Properties
of the primary are reconstructed with the help of Monte Carlo
simulations of EAS and the corresponding Cherenkov

image.

/ Gamma photon

Y Cherenkov shower

Light pool

Stereoscopic imaging:

1. Better reconstruction of direction, core
location, and energy of primary with multiple
telescopes

2. Elimination of fluctuations in low energy
range due to night sky background and muons
by applying coincident trigger criteria



black
holes

There are about 1000-10000
cosmic-ray-initiated showers for every
gamma-ray initiated one.

Both gamma-rays and
cosmic rays (protons)
produce EAS on

entering the
atmosphere.
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VERITAS




Deep Generative Learning as an avenue for data-driven learning of shower-image features
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These features can be used for:
1.  Supervised classification
2.  Unsupervised grouping/clustering
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