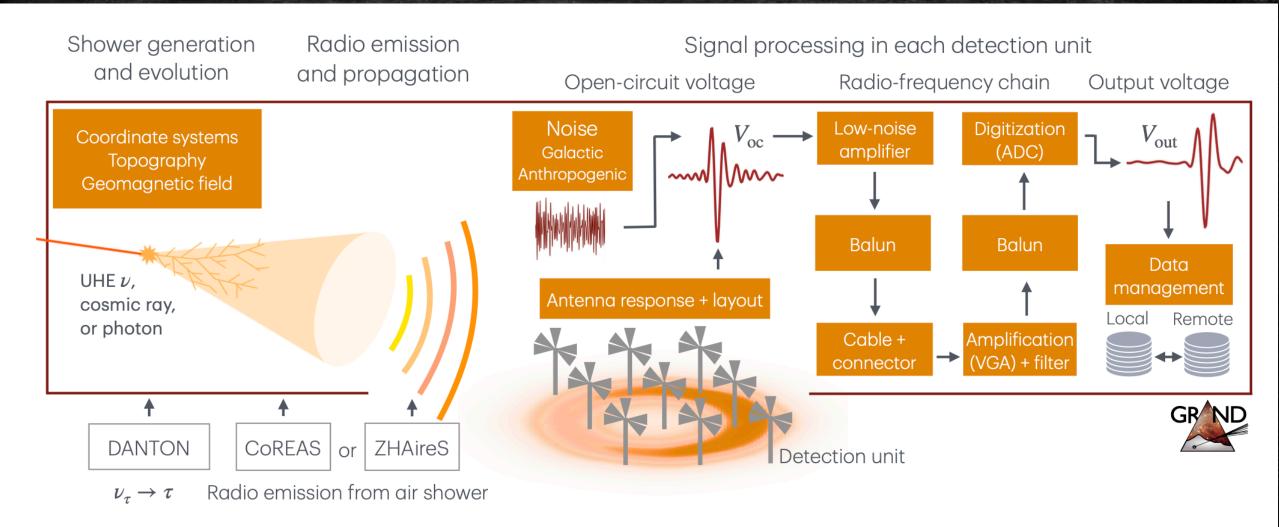


E-Field Reconstruction with Truncated Likelihood Ratio Estimation

Thomas McKinley - SFSU For the GRAND Collaboration

GRANDlib Simulation Pipeline



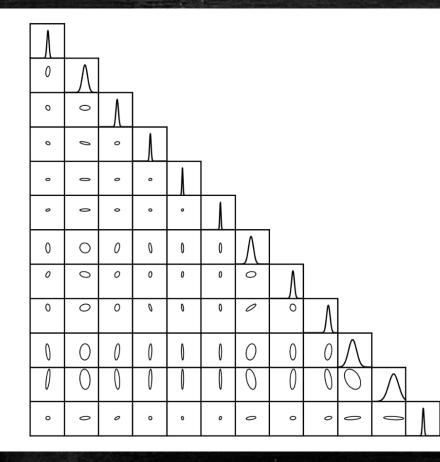
[1] Grandlib: A simulation pipeline for the giant radio array for neutrino detection (grand). Computer Physics Communications, 308:109461, March 2025.

Electric Field Reconstruction for GRAND

- Use Simulation-Based Inference to detect UHECR signals in the heavily contaminated data from background noise.
- From read-out voltage, we can recreate the input electric field amplitude using the GRANDlib simulation pipeline.
- Based on realistic GRANDIb simulations. We can train a neural network through SBI to retrieve actual signals from the noisy data.

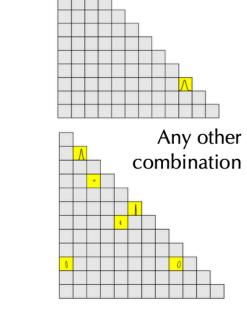
Swyft and Marginal Inference Swyft through marginalization allows us to cherry-pick the parameters of interest.

Standard MCMC



Parameter 1 Parameters

1 and 10



Parameter 10

Swyft

Credit for image and inspiration of the following slides is given to Christoph Weniger.

NRE Algorithm

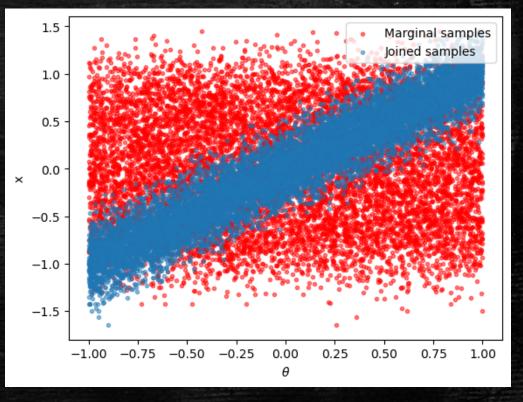
Swyft uses Neural Ratio Estimation (NRE) for SBI.

$$r(x;\theta) \equiv \frac{p(x|\theta)}{p(x)} = \frac{p(\theta|x)}{p(\theta)} = \frac{p(x,\theta)}{p(x)p(\theta)}$$

Generate training data:

Y = 1: MatchingY = 0: Scrambled (Marginal) $p(x, \theta | Y = 0) = p(x, \theta)$ $p(x, \theta | Y = 1) = p(x)p(\theta)$

 $x = \theta + \sigma$



Credit: Noemi Anau Montel, Alex Cole, Benjamin Kurt Miller, Christoph Weniger

NRE Cont

Initialize neural net:

 $f_{\phi}(x,\theta)$

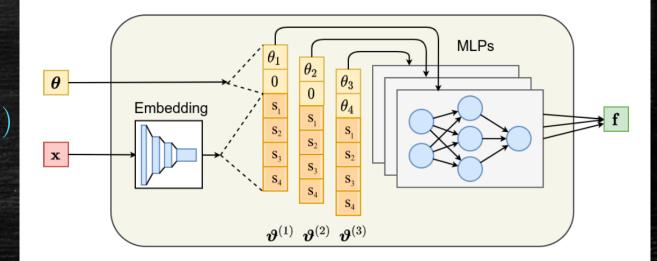
Sample Swyft Network

$\mathcal{L}(\phi) = \sum_{i \in B} \ln\sigma(f_{\phi}(x_i, \theta_i)) + \ln\sigma(-f_{\phi}(x_i, \theta_{P(i)}))$

After Training:

$$f_{\phi}(x,\theta) \approx \ln r(x;\theta) = \ln \frac{p(\theta|x)}{p(\theta)}$$

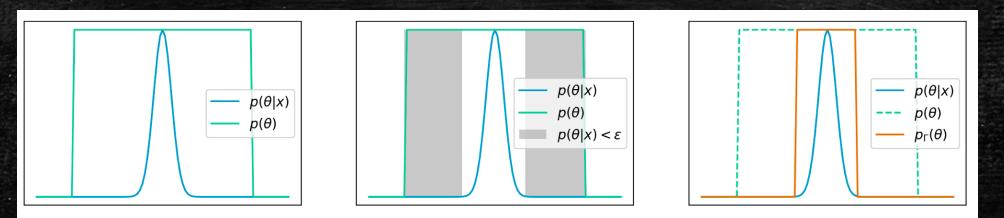
[2] Benjamin Kurt Miller, Alex Cole, Christoph Weniger, Francesco Natting Ou Ku, and Meiert W. Grootes. swyft: Truncated marginal neural ratio estimation in python. Journal of Open Source Software, 7(75):4205, 2022.



TMNRE

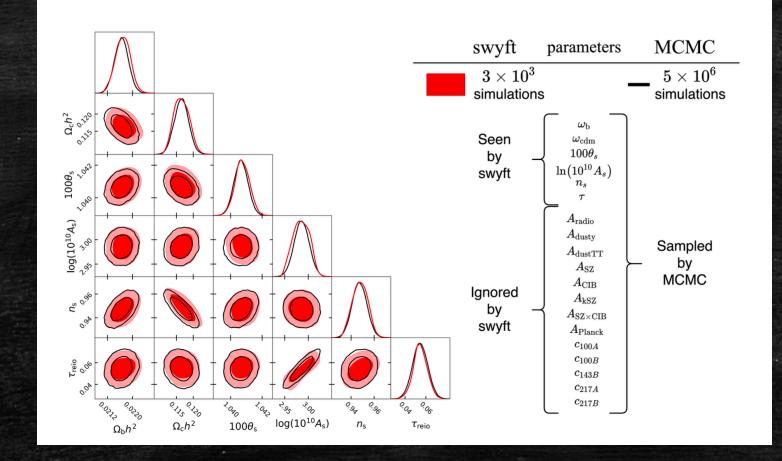
Use a truncated version of the prior for proposal function for marginal estimation. $p(x|\theta_1) = \int d\theta_2 \dots d\theta_N p(x|\theta) \tilde{p}(\theta_2, \dots, \theta_N)$ Indicator function for allowed truncation within Gamma.

 $\tilde{p}(\theta) = \frac{1}{Z} \mathbb{I}(\theta \in \Gamma) p(\theta)$

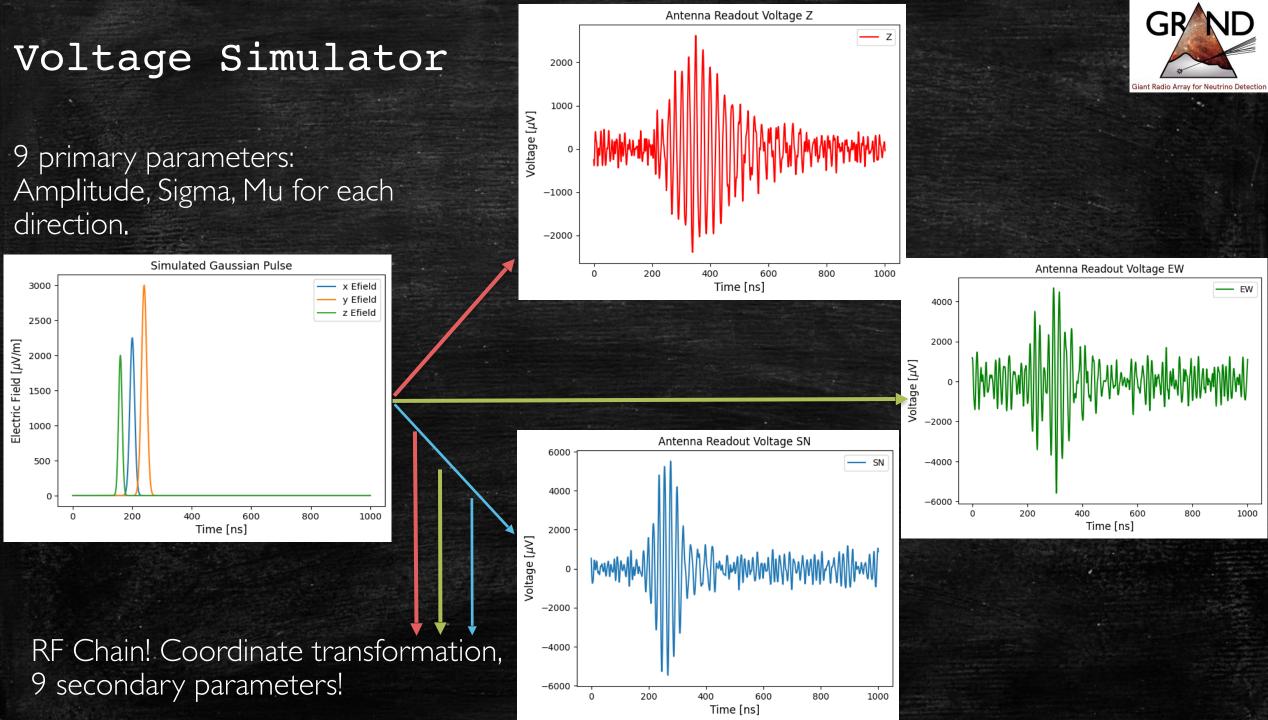


[2] Benjamin Kurt Miller, Alex Cole, Christoph Weniger, Francesco Nattino, Ou Ku, and Meiert W. Grootes. swyft: Truncated marginal neural ratio estimation in python. Journal of Open Source Software, 7(75):4205, 2022.

Why Swyft? Cosmological Parameter Example



[2] Benjamin Kurt Miller, Alex Cole, Christoph Weniger, Francesco Nattino, Ou Ku, and Meiert W. Grootes. swyft: Truncated marginal neural ratio estimation in python. Journal of Open Source Software, 7(75):4205, 2022.



Swyft Implementation

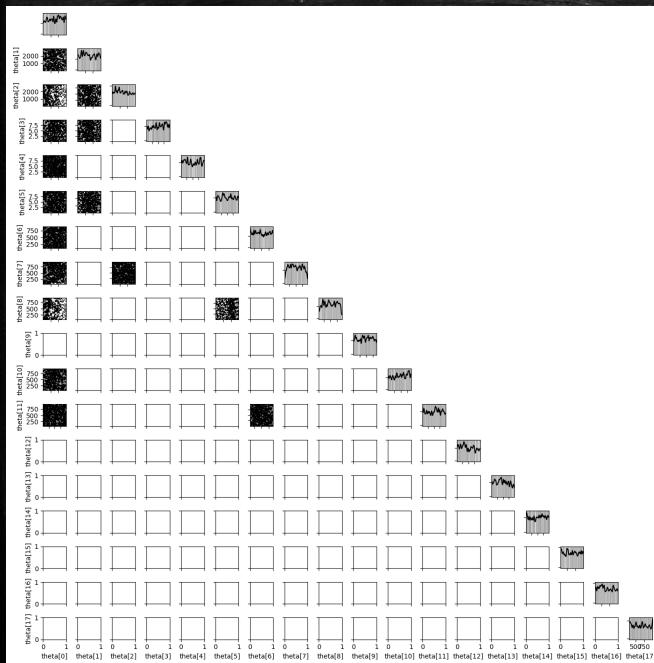
Our Swyft network was constructed following the tutorials.

- I. We generate the training data, x, and draw θ_i
- 2. We establish an inference network to estimate ratios of the form:

$$r(x; \theta_i) = \frac{p(x, \theta_i)}{p(x)p(\theta_i)}$$

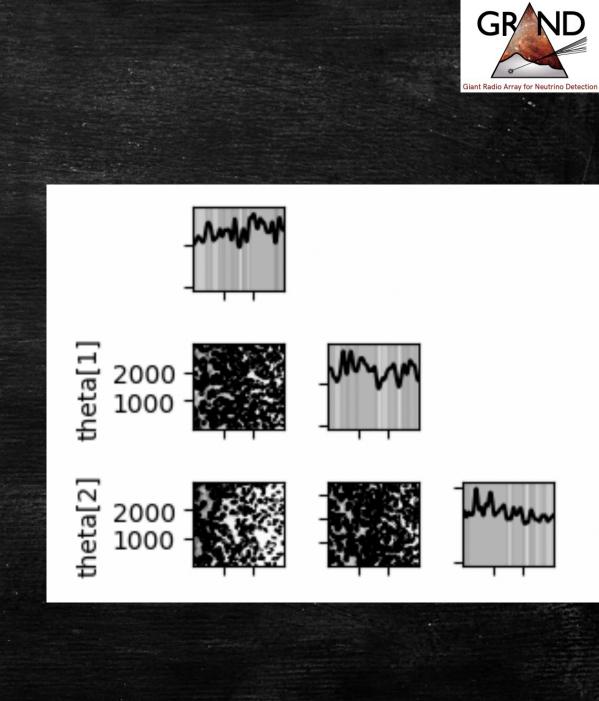
- 3. Data has dimensions of the number of time-bins by 3.
- 4. Training commences.
- 5. We finally evaluate our inference network by comparing to the prior sample of the drawn θ_{is} .

SWYFT and E-field Reconstruction



mu

www 500750



Future Goals

- Get network working! Truncation!
- Gaussian pulse is a rough approximation for electric field. Plan to use physically motivated simulators that better approximate real EM Showers.
- Directly implement our eventual working network into the GRANDIb pipeline.