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GRAND

GRAND Collaboration. arXiv:2408.10926
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https://github.com/grand-mother/grand

zenith = 72.0 deg, azimuth = 117.4 deg
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1. Simulation 2. Machine Learning

3. Inference

~8,000 DC2 Simulations (NJ) Graph Convolution Network

(Filters: events > 5 antennas,
>60 micro-Volt/m)

Credit: G. Louppe

ArXiv:2402.05137

Neural Autoregressive Flow
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Masked Autoregressive Flow

LtU-ILI  Ho+ (2024) °
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Implementation (Inference)

Pass in a simulated event from DC2

training data to the GCN

€ Nodes created from antenna location
& trigger time

€ Edges based on temporal distance
between neighboring antennas
utilizing k-nearest neighbors (kNN)

Direction of air-shower is implied from

resulting graph architecture

Outputs posterior distributions of input

data-parameter pairs
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Implementation
(Model Validation)

e 78,200 simulated events (80/20
split for training/validation)

e Takes in posterior distributions from
inference step

e Direct comparison to the
data-parameter pair distribution
from 20% validation dataset

ArXiv:2402.05137 LtU-ILI Ho+ (2024)
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Preliminary
Results
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= Tuned k for graph construction, # of channels on
GCN, output channels & drop rate

- Best results using:

[k =5, in_channels = 4, gcn_channels =[16,32],
out_channels =8, drop_p = 0.05] 10




Preliminary Results (data driven)

Azimuth [deg]

Zenith [deg] Azimuth [deg]
1.0 1. ‘
T
0.8 7 1 o8 —
= g [
S 0.6 S 0.6 — ,’j
& [
. E /4
55654 £ 047 0.4 ’
£
280 w
0.2 - , 0.2
260 |
240 _@_ [
‘ 0.0 T 0.0 T T
220 A 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Bt Predicted Percentile Predicted Percentile
7'5 8'0 85 9‘0 2(I)0 250 3(;0 - H
it (kg .o Tuned k for graph construction, # of channels on
GCN, output channels & drop rate
Direction resolution ~5-10 deg = Best results using:
(within 1-sigma of true value [k = 5, in_channels = 4, gcn_channels = [16,32],

indicated by red point) out_channels = 8, drop_p = 0.05] 1



Azimuth [deg]

280

260

240

220

200

Preliminary Results (data driven)

D

180 -

Empirical Percentile

T

75

80

85

200

250

Zenith [deq]

Azimuth [deg]

Direction resolution ~5-10 deg
(within 1-sigma of true value
indicated by red point)

Zenith [deg]

Azimuth [deg]

1.0 1.0 ‘
| |
0.8 / 0.8 7
0.6 # 1 0.6 -
0.4 - yd 0.4
0.2 1 A 0.2 -
0.0 T T T 0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Predicted Percentile

Predicted Percentile

= Tuned k for graph construction, # of channels on
GCN, output channels & drop rate

- Best results using:

[k =5, in_channels = 4, gcn_channels =[16,32],
out_channels =8, drop_p = 0.05] 1




Summary

=> Successful implementation of SBI methodology to reconstruct
posterior distributions & estimate parameter errors

=> Purely data-driven approach correctly reproduces UHE cosmic ray
direction within 5-10 degrees resolution

=> Implement a physics-informed approach to the ML model, hoping to
achieve sub-degree resolution (cf. Arsene Ferriere talk).
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Thank you!






Extra

Using “lampe” implicit inference backend offered by LtU-ILI for it’s variety of
NDEs & greater flexibility in embedded network choice

Wanted to use a graph type embedded network given the complexity of the
training data

Best results using GCN:

o [k =5, in_channels = 4, gcn_channels =[16,32], out_channels = 8, drop_p = 0.05]
Tried Graph Attention Network (GAT) as embedded network at first, but it struggled to
learn the posteriors, mostly recreated entire training data distribution
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