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Introduction

xy

RNO-G aims to detect Askaryan emission from UHE neutrinos using an array of 
radio antennas deployed across 8 stations situated at Summit Station, 
Greenland. 

Direction reconstruction of neutrinos using interferometry requires precise 
understanding of the in-situ antenna response and constraining of the 
ice-properties. 

Calibration pulser drops in RNO-G boreholes provide an excellent data-set for 
antenna-response and ice-model studies. 
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Introduction

xy

● Objective: to reconstruct pulser 
(transmitter) depth using signals 
received by in-ice phased array 
antennas

RNO-G aims to detect Askaryan emission from UHE neutrinos using an array of 
radio antennas deployed across 8 stations situated at Summit Station, 
Greenland. 

Direction reconstruction of neutrinos using interferometry requires precise 
understanding of the in-situ antenna response and constraining of the 
ice-properties. 

Calibration pulser drops in RNO-G boreholes provide an excellent data-set for 
antenna-response and ice-model studies. 
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Introduction

xy

● Objective: to reconstruct pulser 
(transmitter) depth using signals 
received by in-ice phased array 
antennas

● Challenges: ray tracing 
simulations are time consuming 
and computationally heavy

RNO-G aims to detect Askaryan emission from UHE neutrinos using an array of 
radio antennas deployed across 8 stations situated at Summit Station, 
Greenland. 

Direction reconstruction of neutrinos using interferometry requires precise 
understanding of the in-situ antenna response and constraining of the 
ice-properties. 

Calibration pulser drops in RNO-G boreholes provide an excellent data-set for 
antenna-response and ice-model studies. 
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Straight line reconstruction

zreco

Depth

Receiver i

Receiver j

zri

zrj

Receiver axis Pulser axis
Δxy

xyxypulse

r

xyreceive

r

θ

~θ

dl

Δztx
est

dz

Reconstructed 
pulser

Assumptions
● No bending of light ray
● 3-stage model for refractive 

index of ice

Steps
1. Calculate depth difference 

Δztx
est

 = Δxy/tan(θ)
2. Calculate zreco = zri + Δztx

est

Data
dt Difference in time between pulse at receiver i and receiver j using 

cross-correlation

dl Difference in distance traveled by waveform dl = (c/nij)dt 

zri, zrj, dz Depth of receiver i, receiver j and the difference zri - zrj

ni, nj, nij refractive index at receiver i and j and their average

θ Angle between receiver axis and wave = cos-1(dl/dz)

Δxy Distance in the xy plane between pulser and receiver axes

arXiv:2406.00857



Problems
1. Reconstruction fails for cases when dl > dz (invalid cosine)
2. As dt increases, there is greater deviation from the straight line assumption
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Drawbacks of straight line reconstruction
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Idea
Train a neural network using data from the previous slide to predict zerror = zreco - 
ztx and correct the error in zreco

ML learns to predict the error in the depth reconstructed using straight line 
assumptions and allows us to correct our reconstructed depth by accounting for 
the deviation from straight line ray propagation

The error
● is not randomly distributed
● shows a clear non-linear 

relationship with dt
● increases with increasing 

|dt|



Application of the trained model
1. We use events from calibration pulser drop 

data. For every event, calculate the zreco 
using straight line assumption. 

2. Neural network outputs the predicted error 
zerror in zreco. We apply this correction to the 
straight line assumption and get reconstructed 
depth zreco corrected = zreco- zerror
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Machine learning for error correction
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Xn

zerror

Neural network

yn,pred

All input variables can be 
calculated using receiver data 
and station architecture
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Training
1. Neural network gets initialized with all elements (known as model parameters) of matrices 

set to random values near zero
2. We use events from stationary calibration pulser data. For every event, calculate the 

zreco and compute zerror. Input Xn is a vector length 12 and expected output yn,true is zerror of 
the event. The model will produce a yn,pred which will be compared against yn,true to 
calculate the squared error between yn,true and yn,pred

3. The neural network optimizer reduces this squared error using Adam optimizer 
(combination of differentiation and numerical methods)

Normalize
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The root-mean squared error of the predicted zerror from the test set is 4.4m. There were 7 observations (0.05%) that had an 
error of more than 35m in zerror. If they are discounted, root-mean squared error of the predicted zerror is 3.2m. These outliers 
will be further studied to understand the deviation.

Depth reconstructed more accurately using neural network.

8

Training, Inference and Results
● Training data consists of pulsed calibration events across 7 stations 
● Input parameters constructed using any pair of the deep in-ice 
● Total stationary pulser data size: 68,757
● Split development set 80:20 into training and validation (55005) and testing (13752)
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Pulser drop reconstruction
● Data from calibration pulser being lowered and 

raised back up in a borehole 
● Transmitter depth unknown, lowered from ~40m to 

~80m and recorded 26 runs over ~5 hrs
● Reconstruction using pulsed events received by 4 

deep in-ice channels (phased array)

●  Caveats: 
○ Full index of refraction profile unknown to 

the model, hence reconstruction is limited 
to using data from deep channels

○ Shallower channels located farther apart 
(~20m), hence the error in zreco from 
straight line propagation assumptions 
would be larger

○ Training data did not include cases of 
transmitter being in shallow ice, hence is 
susceptible to biasing 

○ Black box physics processing

ML reconstruction matches with the run description 
from deployment notes!
Run 500016: pulser lowering down
Runs 500017-22 : pulser ~80m
Run 500024: pulser rising up



● Experiment with different model architectures
○ Currently we are only using 3 layers with 128 -> 64 -> 1 nodes
○ Increasing layers and tweaking nodes
○ Incorporating shallower channels in the training data
○ Validating neural network predictions of pulser drops using RadioPropa simulations

● Use entire waveform at receivers
○ Recurrent neural networks (RNN) can learn from sequential data
○ If both waveforms are input together into an RNN, it can learn to calculate the gap and the appropriate correction to 

predict the actual depth

● Extend the Neural Network and use all available in-situ receivers for performing 3 dimensional 
reconstruction
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Future work



● Straight line ray propagation assumption does not accurately predict transmitter depth given the receiver 

waveforms 
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● Straight line ray propagation assumption does not accurately predict transmitter depth given the receiver 

waveforms 

● The assumptions break as the separation between receiver and transmitter increases

● Data from transmitter at known depths can be used to train a Neural Network to predict the error in 

straight line assumptions

● This trained Neural Network can be used to reconstruct depth of the transmitter given receiver waveforms

● Training doesn’t require extensive computational resources and is trained within 30 mins. Prediction 

takes a couple of seconds. 

● Applications to RNO-G: Reconstruct transmitter depth in pulser drop runs where the moving transmitter’s 

depth is not known
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Summary



Thank you!
Questions?
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● The inputs are related to each other, will there be a problem with multicollinearity?
○ Multicollinearity is generally a problem with linear regression because it involves matrix inversion. With neural networks, 

this should not be a problem because weights are learned using backpropagation
● Why not use the actual depth of the pulser as the target?

○ Stationary pulser data only has 14 target depths and our objective is to predict the depth of the pulser during a pulser 
drop which has a greater variety of depths than stationary pulser. If we use actual depth, model will tend to overfit and 
cannot be generalized to other depths. With error prediction, we have some hope of generalization

● Zerror predicted by the neural network for stationary calibration pulser data (testing)
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Additional comments


