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Machine Learning at 
Telescope Array



Outline

● Composition-spectrum and arrival direction studies

● Towards reliable neural networks

● Autoencoder



Telescope Array

Largest cosmic ray observatory in Northern Hemisphere
(700 km2, 507 Surface Detector stations + 3 Fluorescent detectors, 

TA Low Energy Extension)



1. EAS composition, energy and arrival direction 
reconstruction



Getting most out of the data

● Reconstructed parameters
(domain knowledge)

                             +

● Detector bundle
(geometrical features)

                             +

● Detector sequence
(temporal features)

Predictions



Detectors bundle

● x, y, and z coordinates of the detector
● Detector’s total signal
● Time of the plane front arrival
● Difference in time between the start of the 

recorded signal and the wavefront arrival
● Masks:

○ Was triggered?
○ Was saturated?

Spatial detectors features

CNN
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Detectors sequence

         … …

detectors ordered by time of the plane front arrival

encoder encoder encoder encoder

properties properties properties properties

Recurrent neural 
network

         … …

Temporal 
features



Full NN

Detectors 
grid

Detectors 
sequence

Reconstructed 
parameters

MLP Air shower 
properties

Technical remarks:

● Cosine similarity for direction 
reconstruction.

● E-1 differential EAS spectrum for 
training.

● Using Layer Normalization  yields 
better metrics

● Better to train only for one target 
prediction.

● Small networks (~104 parameters) 
perform best.

● Transformers yield similar metrics.
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Angular resolution

HiRes spectrum

“Native” QGSJET-II-4 EPOS-LHC

● ~0.4° angular resolution improvement
● Weak model dependence



Energy resolution

“Native” QGSJET-II-4 EPOS-LHC

● Better energy reconstruction with NN
● Moderate model dependence



Uncertainty estimation

Detectors 
grid

Detectors 
sequence

Reconstructed 
parameters

MLP

Air shower 
properties

Estimate error of reconstructed 
parameters:

Loss = Lreco + lnσ2 + Lreco/ σ
2

Can be used to:
● Exclude events of bad quality 

(σ-based cuts)
● Study if neural network is unsure 

of prediction on new data
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Uncertainty 
estimation, σ2



Uncertainty estimation, direction
0.5 1.0 1.5 2.0 3.0

0.08 0.77 0.96 0.99 0.999

1.41 x sigma 
cut

exposition

NN correctly identifies 
events of bad quality 



Uncertainty estimation, energy



2. Towards reliable neural networks



Domain adaptation

Domain adaptation - techniques used to address challenge of training a model on one data 
distribution and applying it to a related but different data distribution:

● Train on various source domains (different hadronic models)

● Auto-labeling: 
○ Train NN on labeled (for example, MC) data
○ Label target data using NN
○ Fine-train NN on the merged dataset

 
● Search for common representation space:

○ Force data representations to be the same for source and target distribution



Auto-labeling: photon search

1. Train NN on MC data to 
distinguish protons and photons

2. Apply NN to experimental data
3. Select events that are classified 

as protons with high confidence 
(ξ < 0.2)

4. Include these protons to the 
training data set

5. Fine-train NN on the resulting mix



One should force NN to disregard differences between various hadronic 
interaction models and experimental data

Enforcing common representation space (project)

17

Input data:
MC and 

experimental

First part 
of NN

(3 blocks)

Second part 
of NN (MLP)

Classificator:
MC vs. exp.

Reconstruction

Classification should 
not be able to 

distinguish MC and 
experimental data!
(“wrong” sign loss)



3. Autoencoder



Autoencoder

Goals:

● Obtain latent (contracted) event representations:
○ Search for anomalies
○ MC - experimental data comparison
○ Additional parameters for NN training

● Model independent event representation



Towards model independence (next step)

source: ijdykeman.github.io

Usual AE:
● Input data: images
● Latent space: full information to 

reproduce data

Conditional AE:
● Input data: image plus label
● Latent space: information to reproduce 

data (given additional label information)
● Decoder: given point in latent space and 

label, reconstruct data

Latent space does not store information on the 
label! 

For astrophysics, label = MC model or 
experimental data



Conclusion

● Main problem: validating NN predictions on experimental data
○ Domain adaptation and CAE as way to solve this

● ML for FD, TALE and others

● Unified framework for data analysis (Anton’s talk)



Backup



Neural network

Neural network’s blocks:

                    
● Spatial detectors bundle 

(geometrical features)
                                              
● Temporal detector bundle

(overall information)

● Reconstruction parameters 
(high-level information)
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Finding optimal classification threshold

Optimize merit function :
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L95 provides a blind estimation of upper limit on photon flux:

ncand(ξ) - expected number SD events classified as photons
σ95 - 95% upper bound on the expected number ncand(ξ)
M(⋅) - expectation value with respect to Poisson distribution

nγ(ξ) - number of photons classified as photons
nγ

0 - total number of photons



Phase space 
of all events

Photons

Protons

ξ0 1

Subspace of phase space, 
identified as photons with 

confidence level ξ

Finding optimal classification threshold

Optimize merit function :
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Motivation
         

Detection of EeV photon-induced air showers would indicate new physics

To search for such events, it is desirable to have as big exposure time as possible 

● Surface detectors operate 
almost at all times.

● To get the best separation of 
photon- and hadron-induced 
air showers, employ Neural Networks.

hadrons photons 26



Results
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4. Mass composition analysis



Mass composition analysis

~39% success in 4-class model

Evolution of air showers is stochastic.
Data may be similar for different primaries   

Can we do better on 
ensembles of events?



Making use of statistics

We are interested in obtaining mass composition of an ensemble of events!

5 000 events

classifier

5 000 x 4
prediction

get mean and stds:
2x4 numbers

converter

mass 
composition

Converter is the second 
neural network, which 

improves classifier 
predictions for ensembles of 

events



Making use of statistics

proton helium nitrogen iron

classifier 0.1 0.14 0.12 0.09

converter 0.03 0.07 0.06 0.02

Error: mean absolute 
error (averaging over 
events) on 2000 
ensembles



Model dependence 

Classifier predictions Converter predictions

Neural network, trained on QGSJET II-03, observing events generated with QGSJET II-04:

High systematic error: up to 100%



Comparison with stereo data

File from “Stereo from Stroman” page, 167 common events

NN - stereo:
<Δn> : 1.15°
<ΔӨ> : 0.05°
<Δφ> : 0.02°

NN - SD:
<Δn> : 0.73°
<ΔӨ> : 0.12°
<Δφ> : 0.13°

SD - stereo:
<Δn> : 1.20°



Comparison with hybrid data

File from “User: Whanlon” page,  9.5 years; 149 common events

NN - hybrid:
<Δn> : 0.95°
<ΔӨ> : 0.33° 
<Δφ> : -0.16°

NN - SD:
<Δn> : 0.93°
<ΔӨ> : 0.24° 
<Δφ> : -0.10°

SD - hybrid:
<Δn> : 1.0°


