Machine Learning at Telescope Array

Machine Learning for Analysis of High-Energy Cosmic Particles, 01.25 ivan.kharuk@phystech.edu

Outline

- Composition-spectrum and arrival direction studies
- Towards reliable neural networks
- Autoencoder

Telescope Array

Largest cosmic ray observatory in Northern Hemisphere (700 km², 507 Surface Detector stations + 3 Fluorescent detectors, TA Low Energy Extension)

1. EAS composition, energy and arrival direction reconstruction

Getting most out of the data

• Reconstructed parameters (domain knowledge)

+

 Detector bundle (geometrical features)

+

 Detector sequence (temporal features) Predictions

Detectors bundle

- x, y, and z coordinates of the detector
- Detector's total signal
- Time of the plane front arrival
- Difference in time between the start of the recorded signal and the wavefront arrival
- Masks:
 - Was triggered?
 - Was saturated?

Spatial detectors features

Detectors sequence

Full NN

Technical remarks:

- Cosine similarity for direction reconstruction.
- E⁻¹ differential EAS spectrum for training.
- Using Layer Normalization yields better metrics
- Better to train only for one target prediction.
- Small networks (~10⁴ parameters) perform best.
- Transformers yield similar metrics.

Angular resolution

- ~0.4° angular resolution improvement
- Weak model dependence

"Native" QGSJET-II-4

EPOS-LHC

HiRes spectrum

Energy resolution

- Better energy reconstruction with NN
- Moderate model dependence

"Native" QGSJET-II-4

EPOS-LHC

Uncertainty estimation

Estimate error of reconstructed parameters:

Loss =
$$L_{reco}$$
 + In σ^2 + L_{reco} / σ^2

Can be used to:

- Exclude events of bad quality (σ-based cuts)
- Study if neural network is unsure of prediction on new data

Uncertainty estimation, direction

NN correctly identifies events of bad quality

I.41 x sigma cut	0.5	1.0	1.5	2.0	3.0
exposition	0.08	0.77	0.96	0.99	0.999

Uncertainty estimation, energy

2. Towards reliable neural networks

Domain adaptation - techniques used to address challenge of training a model on one data distribution and applying it to a related but different data distribution:

- Train on various source domains (different hadronic models)
- Auto-labeling:
 - Train NN on labeled (for example, MC) data
 - Label target data using NN
 - Fine-train NN on the merged dataset
- Search for common representation space:
 - Force data representations to be the same for source and target distribution

Auto-labeling: photon search

- 1. Train NN on MC data to distinguish protons and photons
- 2. Apply NN to experimental data
- 3. Select events that are classified as protons with high confidence $(\xi < 0.2)$
- 4. Include these protons to the training data set
- 5. Fine-train NN on the resulting mix

Enforcing common representation space (project)

One should force NN to disregard differences between various hadronic interaction models and experimental data

3. Autoencoder

Autoencoder

Goals:

- Obtain latent (contracted) event representations:
 - Search for anomalies
 - MC experimental data comparison
 - Additional parameters for NN training
- Model independent event representation

Towards model independence (next step)

Usual AE:

- Input data: images
- Latent space: full information to reproduce data

Conditional AE:

- Input data: image plus label
- Latent space: information to reproduce data (given additional label information)
- Decoder: given point in latent space and label, reconstruct data

Latent space does not store information on the label! For astrophysics, label = MC model or experimental data

source: ijdykeman.github.io

Conclusion

- Main problem: validating NN predictions on experimental data
 Domain adaptation and CAE as way to solve this
- ML for FD, TALE and others
- Unified framework for data analysis (Anton's talk)

Backup

Neural network

Neural network's blocks:

- Spatial detectors bundle (geometrical features)
- Temporal detector bundle (overall information)
- Reconstruction parameters (high-level information)

Finding optimal classification threshold

Optimize merit function :

$$L^{95} = \frac{M\left(\sigma^{95}(n_{\text{cand}}(\xi))\right)}{S(\xi)}, \quad S(\xi) = \frac{n_{\gamma}(\xi)}{n_{\gamma}^{0}}$$

L⁹⁵ provides a blind estimation of upper limit on photon flux:

 $n_{cand}(\xi)$ - expected number SD events classified as photons σ^{95} - 95% upper bound on the expected number $n_{cand}(\xi)$ M(·) - expectation value with respect to Poisson distribution

Finding optimal classification threshold

Motivation

Detection of EeV photon-induced air showers would indicate new physics

To search for such events, it is desirable to have as big exposure time as possible

- Surface detectors operate almost at all times.
- To get the best separation of photon- and hadron-induced air showers, employ Neural Networks.

hadrons

26

Results

4. Mass composition analysis

Mass composition analysis

Evolution of air showers is **stochastic**. Data may be **similar** for different primaries

~39% success in 4-class model

Can we do better on ensembles of events?

Making use of statistics

We are interested in obtaining mass composition of an ensemble of events!

Converter is the second neural network, which improves *classifier* predictions for ensembles of events

Making use of statistics

	proton	helium	nitrogen	iron
classifier	0.1	0.14	0.12	0.09
converter	0.03	0.07	0.06	0.02

Error: mean absolute error (averaging over events) on 2000 ensembles

Model dependence

Neural network, trained on QGSJET II-03, observing events generated with QGSJET II-04:

High systematic error: up to 100%

Comparison with stereo data

File from "Stereo from Stroman" page, 167 common events

NN - stereo: NN-stereo direction reconstruction comparison Zenith angle Azimuth angle $<\Lambda n>$: 1.15° 1.00 $\langle \Delta \Theta \rangle$: 0.05° 0.8 0.75 <Δφ> : 0.02° 0.50 0.6 cos(azimuth_hybrid) sin(zenith_hybrid) 0.25 NN - SD: 0.00 $<\Lambda n>: 0.73^{\circ}$ 0.4 <Δθ> : 0.12° -0.25 <Δφ> : 0.13° -0.500.2 -0.75 SD - stereo: 0.0 --1.00<Λn> : 1.20° 0.0 0.2 0.4 0.8 -1.00 -0.75 -0.50 -0.25 0.00 0.6 0.25 0.50 0.75 1.00 sin(zenith_neural) cos(azimuth_neural)

Comparison with hybrid data

File from "User: Whanlon" page, 9.5 years; 149 common events

NN-hybrid direction reconstruction comparison NN - hybrid: Zenith angle Azimuth angle $<\Lambda n>: 0.95^{\circ}$ 1.00 <Δθ> : 0.33° 0.8 0.75 <Δφ> : -0.16° 0.50 0.6 cos(azimuth_hybrid) sin(zenith_hybrid) 0.25 NN - SD: 0.00 $<\Delta n > : 0.93^{\circ}$ 0.4 -0.25 <Δθ> : 0.24° <Δφ> : -0.10° -0.500.2 -0.75 SD - hybrid: 0.0 -1.00<∆n> : 1.0° 0.0 0.2 0.4 0.6 0.8 -1.00 -0.75 -0.50 -0.25 0.00 0.50 0.75 1.00 0.25 sin(zenith_neural) cos(azimuth_neural)