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The IceCube Neutrino Observatory
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Where do our neutrinos come from?
● Neutrinos are produced by cosmic ray interactions in the atmosphere 

○ Primarily pion and kaon decay, small component from charmed mesons/baryons

EPJ Web Conf. 99 (2015) 08001
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https://inspirehep.net/literature/1346929
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Where do our neutrinos come from?

● At high energies, a larger fraction 
are of astrophysical origin

● Lots of interesting physics
○ Neutrino sources
○ Diffuse flux/flavor measurements
○ Beyond-the-Standard-Model physics
○ …and more!

● Low statistics, so accurate 
measurements of the neutrino 
properties are very important
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Phys.Rev.D 110 (2024) 2, 022001

https://inspirehep.net/literature/2762760
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Neutrino Interactions

Phys.Rev.D 109 (2024) 11, 113001
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● Almost all of our events are neutrino 
deep inelastic scattering
○ Neutral current (NC) → out lepton = neutrino
○ Charged current (CC) → out lepton = e/𝜇/𝜏

● Neutrino energy cannot be directly 
measured, but inferred from the 
secondary particles
○ Light produced by the hadronic shower and 

outgoing lepton (if CC)

● The inelasticity is defined as:
○ y = hadronic energy / neutrino energy

https://inspirehep.net/literature/2645667
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Event Morphologies
● Most events fall into two classes: tracks and cascades

○ Others exist: starting tracks, double cascades, etc.
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Atmospheric muons
𝜈𝜇 CC

𝜈e CC, 𝜈𝜏 CC, 𝜈ℓ NC,
Glashow Resonance
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Neutrino Reconstructions
● What are the quantities that we’re interested in?

○ Neutrino energy
○ Energy losses
○ Direction
○ Inelasticity
○ Particle ID/event morphology
○ Vertex position

● Traditional maximum likelihood estimation-based methods can be very 
slow and rely on approximations
○ ML-based reconstructions → significantly faster

● Today, I will show some of the techniques we have used in recent 
results and new/ongoing developments
○ Not an exhaustive list!
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Boosted Decision Trees

● “Classical” machine learning tool often 
used to remove background events

● Example: latest 3+1 sterile neutrino 
analysis event selection
○ Uses high-level reconstructions and low-level 

event statistics as inputs
○ Trained on a large sample of atmospheric 

muon, bundle, and neutrino events

● Powerful discriminator against 
atmospheric muon backgrounds and 
cascade events → pure track sample
○ >99.9% muon neutrino purity, ~350k events in 

10.7 years of data
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Phys.Rev.D 110 (2024) 9, 092009

https://inspirehep.net/literature/2786553
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DNN Input Features
● Need to choose how you want to input your data into a network

● Three main options:
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Very long, variable length Variable length (unless padded) Small, fixed size for every DOM

Less information



Philip Weigel / Workshop on Machine Learning for Cosmic Particles / 01-28-2025

Convolutional Neural Networks
● CNNs require fixed input sizes

○ Absence of data → pad with zeros
○ Can use modified convolutions to exploit detector symmetries

● Different implementations used in the observation of neutrinos from 
the galactic plane and the observation of astrophysical tau neutrinos
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Phys.Rev.Lett. 132 (2024) 151001JINST 16 (2021) P07041

Data Saliency Map

https://inspirehep.net/literature/2675798
https://inspirehep.net/literature/2675798
https://inspirehep.net/literature/2764838
https://inspirehep.net/literature/2764838
https://inspirehep.net/literature/1842999
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Convolutional Neural Networks

● Recent neutrino oscillations result 
with DeepCore leveraged CNN-based 
reconstructions

● Largest improvements in the lowest 
energy bins (E < 40 GeV)
○ Important for resolving the oscillation 

maximum!
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arXiv:2405.02163

https://arxiv.org/abs/2405.02163
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Graph Neural Networks: DynEdge
● DynEdge is a graph neural network (GNN) model

○ Construct a graph representation of data, perform edge convolutions, and combine 
with global event information
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JINST 17 (2022) 11, P11003

kNN Graph →

https://inspirehep.net/literature/2148122
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Classification: DynEdge vs. BDT

● At low energies, DynEdge has 
been shown to outperform BDTs at 
classification tasks
○ Neutrinos vs. muons
○ Tracks vs. cascades

● Improvements over LLH methods 
for reconstruction tasks
○ Up to 20% improvements in energy and 

direction reconstructions

● Graph inputs are constructed 
using summary statistics for each 
DOM as a node
○ 8 nearest neighbors for edge 

connections 
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JINST 17 (2022) 11, P11003

https://inspirehep.net/literature/2148122
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IceCube Kaggle Competition
● Public competition (direction reco) with monetary prizes:

○ A large sample of IceCube simulation was provided
○ https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice

● Many different techniques and DNN architectures with 
interesting results
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arxiv:2307.15289 Eur.Phys.J.C 84 (2024) 6, 646

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://arxiv.org/abs/2307.15289
https://inspirehep.net/literature/2713927
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Transformer Reconstructions

● Transformer-based models were a 
large portion of the best-scoring 
solutions in the Kaggle competition

● Basic architecture:
○ Graph/positional encoding
○ Multi-head attention
○ MLP

● Reconstructed quantity can be 
extracted from a learnable token or a 
combined output sequence

● These techniques have been applied to 
other IceCube reconstruction tasks arXiv:2310.15674
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Kaggle 2nd Place Solution:

https://arxiv.org/abs/2310.15674
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Transformer Reconstructions

● Strong improvements for energy reconstruction, less so for the median 
directional error → related to training strategy
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Transformer Inelasticity Reconstruction
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● An exciting application is “visible” 
inelasticity reconstruction
○ Proxy variable using the detectable 

energy in the detector
○ Statistical nu/nubar separation, cross 

section measurements, tau neutrinos

● Outperforms previous architectures 
for the same task:
○ Random forest RMSE ~0.19
○ CNN RMSE ~0.17
○ Transformer RMSE ~0.13
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Dealing with long sequences
● For very large sequences, mainly high energy events, it is difficult to 

keep every pulse since the memory requirement scales quadratically 
○ Naive implementation is to truncate after some number of pulses
○ Better methods exist, but removing any pulse is throwing away event information

● Are there alternatives for long-sequence data?
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State Space Models

● Stateful sequence-to-sequence 
model from classical control 
theory
○ Discretized with learnable parameters

● Has both a recurrent and 
convolutional representation
○ Fast training and fast inference

● Input has an ordering, does not 
require any positional encoding

● Generally, fewer parameters than 
transformer-based models for 
similar performance
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Figures from M. Grootendorst

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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MAMBA
● SSM+selection and hardware-aware algorithms

○ Selection mechanism → input-dependent sequence interactions
○ Very fast inference (scales linearly with sequence length)

● Good backbone architecture for long-sequence data
○ Nearly a drop-in replacement for MHA in a transformer model

● Does MAMBA work for neutrino reconstructions?
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arXiv:2312.00752

https://arxiv.org/abs/2312.00752
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Example: MAMBA Inelasticity Reconstruction
● ~40M parameter MAMBA model trained on CC muon neutrino events

○ Leverages fine-grained pulse series information without truncation
○ Comparable performance to transformers, ~5x less GPU memory, ~800 Hz inference
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GraphNeT

22



Philip Weigel / Workshop on Machine Learning for Cosmic Particles / 01-28-2025

GraphNeT

● The machinery developed for DNN-based reconstructions does not 
need to be specialized to each experiment

● The same technique employed by one experiment could be adapted to 
another experiment quite easily
○ A case for an open-source, cross-experiment collaborative effort
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https://github.com/graphnet-team/graphnet

https://github.com/graphnet-team/graphnet
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GraphNeT Workflow
● Construct a model using the library of detectors, models, tasks

○ e.g. DynEdge + Direction Reconstruction

● Train the model using a labeled MC training sample

● Model can be applied to data using deployment modules, which can be 
integrated into different processing chains
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arXiv:2501.03817

https://arxiv.org/abs/2501.03817
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A Few Implemented Architectures
● DynEdge

○ Graph convolutional neural network
○ DynEdge+Transformer model also available (Kaggle 1st place solution)

● IceMix
○ Transformer with sinusoidal position encoding, space+time attention bias
○ Implementation of Kaggle 2nd place solution

● ParticleNet
○ Graph convolutional neural network (based on arXiv:1902.08570)

● GRIT
○ Graph transformer model (based on arXiv:2305.17589)

● Normalizing flows
○ Implementation of models from jammy_flows
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https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/2305.17589
https://github.com/thoglu/jammy_flows
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GRIT
● Graph transformer model that incorporates edge information into MHA 

and updates edge values
○ Based on the paper “Graph Inductive Biases in Transformers without Message 

Passing” (arXiv:2305.17589)

● Can incorporate different methods of absolute/relative position 
encoding (e.g. relative random walk encodings)
○ Encoding is not required, but expected to give a boost in performance
○ These methods may require significantly more GPU memory (larger graphs)
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https://arxiv.org/abs/2305.17589
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Which models are the best?

● No model is likely the “best” at everything, but there will be 
performance differences depending on the data

● Lots of choices beyond just the architecture
○ What is the best way to construct a graph of spatio-temporal data?
○ Can you use the full pulse series, or do you need to use summary statistics?

● Ongoing effort to benchmark these different architectures against 
several datasets → apples to apples comparison
○ Datasets generated using PROMETHEUS for different detector geometries
○ O(10M) events per dataset, neutral- and charged-current interactions
○ Simulation is simplified, does not contain every detector effect
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PROMETHEUS: Open-source simulation

Comput.Phys.Commun. 304 (2024) 109298
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https://github.com/Harvard-Neutrino/prometheus

https://inspirehep.net/literature/2655303
https://github.com/Harvard-Neutrino/prometheus
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PROMETHEUS: Open-source simulation

● Implementations of various detector 
configurations (water and ice)

● Output can be directly interfaced 
with GraphNeT for training
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Comput.Phys.Commun. 304 (2024) 109298

https://inspirehep.net/literature/2655303
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Preliminary Model Comparisons
● Active effort to evaluate the performance of each architecture on different 

tasks and different detector configurations
○ Still a work-in-progress, results may change!
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Direction

Energy
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Conclusions
● Many analyses in IceCube are now leveraging advances in ML-based 

reconstruction and classification techniques
○ Showed only a small selection of results here, there are many more applications of 

these methods that I did not have time to show!

● The state-of-the-art continues to evolve quickly
○ New architectures and techniques pop up nearly every day

● There is an active effort to develop and maintain an open-source and 
cross-experiment machine learning framework: GraphNeT
○ Consider implementing your experiment!
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Thank you for listening!

https://github.com/graphnet-team/graphnet

