Machine Learning Techniques for
Neutrino Reconstructions in IceCube

Philip Weigel

for the IceCube Collaboration
(pweigel@mit.edu)

Workshop on Machine Learning for
Analysis of High-Energy Cosmic Particles

o ( ( January 28, 2025
) [
BB Massachusetts —
<4
k I I I I I ochnotoy % IBE—'UBE
) Technology




The IceCube Neutrino Observatory

Detector Design
1 gigaton of instrumented ice
5,160 light sensors, or digital
% optical modules (DOMs), digitize
and time-stamp signals

1 square kilometer surface array,
IceTop, with 324 DOMs

- 2 nanosecond time resolution

IceCube Lab (ICL) houses data
= rocessing and storage and sends
100 GB of data north by satellite daily

50 m

1450 m

2450 m
2820 m

IceCube Lab

IceTop

it el 81 Stations
--------- — 324 optical sensors

IceCube Array
86 strings including 8 DeepCore strings
5160 optical sensors

DeepCore

8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower

324 m
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Where do our neutrinos come from?

e Neutrinos are produced by cosmic ray interactions in the atmosphere
o  Primarily pion and kaon decay, small component from charmed mesons/baryons
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https://inspirehep.net/literature/1346929

Where do our neutrinos come from?

10-6|— == Single Power Law (This work)
- - Broken Power Law (This work)

e At high energies, a larger fraction _ 1 e Segmented (y=2) (This work)
are of astrophysical origin 8

e Lots of interesting physics -

o Neutrino sources

E2®Yer - flavor X GEVEM ™25~ 151~

o Diffuse flux/flavor measurements

o Beyond-the-Standard-Model physics 1078}

o ..and more!

e Low statistics, so accurate
measurements of the neutrino 1= |
H 1 Cascade 6 year T
properties are very important e (ol
HESE 7.5 year
10—10 T T I I W W | - 1111111 Al K 1111111 ' R
103 10° 105 106 107

Neutrino Energy [GeV]
Phys.Rev.D 110 (2024) 2, 022001
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https://inspirehep.net/literature/2762760

Neutrino Interactions
e Almost all of our events are neutrino () (k')

deep inelastic scattering
o Neutral current (NC) — out lepton = neutrino
o Charged current (CC) — out lepton =e/u/t

e Neutrino energy cannot be directly W/Z(q)
measured, but inferred from the

secondary particles

o Light produced by the hadronic shower and
outgoing lepton (if CC)

e The inelasticity is defined as: N(P) X

oy =hadronic energy / neutrino energy

Phys.Rev.D 109 (2024) 11, 113001
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https://inspirehep.net/literature/2645667

Event Morphologies

Most events fall intfo two classes: tracks and cascades

°
Others exist: starting tracks, double cascades, etc.
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Neutrino Reconstructions

e What are the quantities that we’re interested in?
Neutrino energy

Energy losses

Direction

Inelasticity

Particle ID/event morphology

Vertex position

O 0O O O O ©O

e Traditional maximum likelihood estimation-based methods can be very

slow and rely on approximations
o ML-based reconstructions — significantly faster

e Today, I will show some of the techniques we have used in recent

results and new/ongoing developments
o Not an exhaustive list!
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Boosted Decision Trees

“Classical” machine learning tool often
used to remove background events

Example: latest 3+1 sterile neutrino

analysis event selection
o Uses high-level reconstructions and low-level
event statistics as inputs
o Trained on a large sample of atmospheric
muon, bundle, and neutrino events

Powerful discriminator against
atmospheric muon backgrounds and

cascade events — pure track sample
o >99.9% muon neutrino purity, ~350k events in
10.7 years of data
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https://inspirehep.net/literature/2786553

DNN Input Features

e Need to choose how you want to input your data into a network

e Three main options:

Waveform Pulse Series Summary Statistics
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Convolutional Neural Networks

e CNNs require fixed input sizes
o Absence of data — pad with zeros
o Can use modified convolutions to exploit detector symmetries

e Different implementations used in the observation of neutrinos from
the galactic plane and the observation of astrophysical tau neutrinos
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https://inspirehep.net/literature/2675798
https://inspirehep.net/literature/2675798
https://inspirehep.net/literature/2764838
https://inspirehep.net/literature/2764838
https://inspirehep.net/literature/1842999

Convolutional Neural Networks
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e Recent neutrino oscillations result
with DeepCore leveraged CNN-based
reconstructions
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e Largest improvements in the lowest g,

w
energy bins (E < 40 GeV) g
o Important for resolving the oscillation “|~'=
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arXiv:2405.02163
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https://arxiv.org/abs/2405.02163

Graph Neural Networks: DynEdge
e DynEdge is a graph neural network (GNN) model

o Construct a graph representation of data, perform edge convolutions, and combine
with global event information

Input Graph
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https://inspirehep.net/literature/2148122

Classification: DynEdge vs. BDT

, Vi Tic 1.0
: ! Los
e At low energies, DynEdge has $%] B
been shown to outperform BDTs at &t ,,| 0.6
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https://inspirehep.net/literature/2148122

IceCube Kaggle Competition

[ 1st Place - (0.38 deg.)
1 2nd Place - (0.32 deg.)
[ 3rd Place - (0.41 deg.)
[ Baseline - (1.23 deg.)

e Public competition (direction reco) with monetary prizes:

o  Alarge sample of IceCube simulation was provided
o https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice

e Many different techniques and DNN architectures with

interesting results .
Up-going
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arxiv:2307.15289 Eur.Phys.J.C 84 (2024) 6, 646
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https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://arxiv.org/abs/2307.15289
https://inspirehep.net/literature/2713927

Transformer Reconstructions

Kaggle 2nd Place Solution:
e Transformer-based models were a 99

large portion of the best-scoring
solutions in the Kaggle competition = mp—- 2| o
0 ¥ m 00 %EE / —
e Basic architecture: Tem—— e 2 S
o  Graph/positional encoding e G add & Norn
o  Multi-head attention e i . - "
o M LP - ' o4 .,Q, : : e . .g% Forward §§
. N 5 O 1 o €5 - Add & Nozm B2
e Reconstructed quantity can be e T ’ Wit
extracted from a learnable tokenora e T s ——
combined output sequence | 4 g Xé}X
8 {7
e These techniques have been applied to ... ® £
other IceCube reconstruction tasks arXiv:2310.15674
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https://arxiv.org/abs/2310.15674

Transformer Reconstructions

106 ¢
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Strong improvements for energy reconstruction, less so for the median

directional error — related to training strategy
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Transformer Inelasticity Reconstruction

0.30 s e

e An exciting application is “visible” ; — Median Transformer
inelasticity reconstruction 0.25 | -—- 1o ]
o Proxy variable using the detectable [ 0 IceCube Work-in-progress
energy in the detector 0.20 |

o  Statistical nu/nubar separation, cross . _
section measurements, tau neutrinos S o015
3 _

e Outperforms previous architectures

0.10
for the same task: :
o Random forest RMSE ~0.19 0.05 |
o CNN RMSE ~0.17 3
o Transformer RMSE ~0.13 0.00
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Dealing with long sequences

e For very large sequences, mainly high energy events, it is difficult to

keep every pulse since the memory requirement scales quadratically
o Naive implementation is to truncate after some number of pulses
o Better methods exist, but removing any pulse is throwing away event information

Pulse Series

Charge

Ml“l Mn)‘.Jm.b.l,lu.;.n..,.)il}m...l.m.A.s;.$.;!).)),,.J...,.,... i

Time

|

e Are there alternatives for long-sequence data?
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State Space Models ot (sequonce)

Continuous SSM

e Stateful sequence-to-sequence Ny — — Ny
model from classical control
Th eo r'y state equation _
o Discretized with learnable parameters . .

output equation

Yy, = Ch,

e Has both a recurrent and

convolutional representation Discrete SSM
o Fast training and fast inference
e Input has an ordering, does not D
require any positional encoding ¢
X B h Cr—>
e Generadlly, fewer parameters than T y
transformer-based models for A

similar performance
Figures from M. Grootendorst
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https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

MAMBA

e SSM+selection and hardware-aware algorithms
o Selection mechanism — input-dependent sequence interactions Output
o Very fast inference (scales linearly with sequence length)

e Good backbone architecture for long-sequence data A S ‘;
o Nearly a drop-in replacement for MHA in a transformer model ' 5

e Does MAMBA work for neutrino reconstructions?
A

i

Embedded Input

arXiv:2312.00752
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https://arxiv.org/abs/2312.00752

Example: MAMBA Inelasticity Reconstruction

e ~40M parameter MAMBA model trained on CC muon neutrino events

o Leverages fine-grained pulse series information without truncation
o Comparable performance to transformers, ~5x less GPU memory, ~800 Hz inference
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GraphNeT



GraphNeT

e The machinery developed for DNN-based reconstructions does not
need to be specialized to each experiment

e The same technique employed by one experiment could be adapted to

another experiment quite easily
o A case for an open-source, cross-experiment collaborative effort

2* GraphNeT

Oo10
%o Deep Learning for Neutrino Telescopes

https://qithub.com/graphnet-team/graphnet
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https://github.com/graphnet-team/graphnet

GraphNeT Workflow

e Construct a model using the library of detectors, models, tasks
o e.g. DynEdge + Direction Reconstruction

e Train the model using a labeled MC training sample

e Model can be applied to data using deployment modules, which can be
integrated into different processing chains

graphnet.deployment

Labelled training data Unlabelled data — |
2 iR econstruct
% (Experiment-specific files) (Experiment-specific files)

graphnet.data graphnet.models graphnet.training
: ; (T "
Convert Read = Configure Build > Train Log - X% > ’
é ' f
(2]
P [ Model

Develop / Experiment

arXiv:2501.03817

Philip Weigel / Workshop on Machine Learning for Cosmic Particles / 01-28-2025 24



https://arxiv.org/abs/2501.03817

A Few Implemented Architectures

DynEdge
o  Graph convolutional neural network
o DynEdge+Transformer model also available (Kaggle 1st place solution)

IceMix
o Transformer with sinusoidal position encoding, space+time attention bias
o Implementation of Kaggle 2nd place solution

ParticleNet
o  Graph convolutional neural network (based on arXiv:1902.08570)

GRIT
o Graph transformer model (based on arXiv:2305.17589)

Normalizing flows
o Implementation of models from jammy flows

Philip Weigel / Workshop on Machine Learning for Cosmic Particles / 01-28-2025
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https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/2305.17589
https://github.com/thoglu/jammy_flows

GRIT

e Graph transformer model that incorporates edge information into MHA

and updates edge values
o Based on the paper “Graph Inductive Biases in Transformers without Message
Passing” (arXiv:2305.17589)

e Can incorporate different methods of absolute/relative position

encoding (e.g. relative random walk encodings)
o Encoding is not required, but expected to give a boost in performance
o These methods may require significantly more GPU memory (larger graphs)

\' Edges out
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1
i
1 Nodes out
—_—
i
1
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1
Il

GRIT Transformer Block

Nodes in

\.i?‘
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https://arxiv.org/abs/2305.17589

Which models are the best?

e No model is likely the “best” at everything, but there will be
performance differences depending on the data

e Lots of choices beyond just the architecture
o What is the best way to construct a graph of spatio-temporal data?
o Can you use the full pulse series, or do you need to use summary statistics?

e Ongoing effort to benchmark these different architectures against

several datasets — apples to apples comparison
o Datasets generated using PROMETHEUS for different detector geometries
o O(10M) events per dataset, neutral- and charged-current interactions
o Simulation is simplified, does not contain every detector effect
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PROMETHEUS: Open-source simulation

https://github.com/Harvard-Neutrino/prometheus

Particle Final State Light Yield Photon Event
Injection Propagation Simulation Propagation Weighting

C e
C__ s

Comput.Phys.Commun. 304 (2024) 109298
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https://inspirehep.net/literature/2655303
https://github.com/Harvard-Neutrino/prometheus

PROMETHEUS: Open-source simulation

e Implementations of various detector T TeeCube Gen2
configurations (water and ice) CERE ';“'
ik o
e Output can be directly interfaced '
with GraphNeT for training

P-ONE GVD

TRIDENT

Comput.Phys.Commun. 304 (2024) 109298
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https://inspirehep.net/literature/2655303

Preliminary Model Comparisons

e Active effort to evaluate the performance of each architecture on different
tasks and different detector configurations
o  Still a work-in-progress, results may change!
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Conclusions

e Many analyses in IceCube are now leveraging advances in ML-based

reconstruction and classification techniques
o Showed only a small selection of results here, there are many more applications of
these methods that I did not have time to show!

e The state-of-the-art continues to evolve quickly
o New architectures and techniques pop up nearly every day

e There is an active effort to develop and maintain an open-source and

cross-experiment machine learning framework: GraphNeT
o Consider implementing your experiment!

Thank you for listening!
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https://github.com/graphnet-team/graphnet

