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Introduction: Extensive air showers

● Primary cosmic ray particles 
produce a cascade of subatomic 
particles when entering the 
atmosphere.

● The radiation emitted by such 
air showers can be recorded 
with radio antennas at the Pierre 
Auger experiment.

Ref. 6



Previous work: Radio imaging

Ze 75◦ Ze 80◦ 

● Radio imaging technique (grayscale coloring on the energy fluence)

Ref. 6



Current work: Radio imaging techniques

4 radio imaging techniques:
● Max local method: Each RD’s energy fluence is MinMax scaled, 

where the maximum value is determined per simulation.

● Max global method: Each RD’s energy fluence is MinMax 
scaled, where the maximum value is determined across all 
simulations.

● Log max local method: Similar to the Max local method, but 
with a log10 transformation applied to the energy fluence.

● Log max global method: Each RD’s energy fluence is MinMax 
scaled; maximum value is determined across all simulations - 
≈4.24*105eVm-2 (iron, 1020eV, vertical, South-East). log10 
transformation is then applied to the energy fluence.



Previous work: Data exploration and preprocessing

● Work described in the article referenced at (6)
● Proton - 0, Iron - 1
● Chemical composition of the UHECR has a greater effect on the depth of the shower 

maximum, than the energy with which it arrives in our atmosphereRef. 6



Previous work: Dataset description

Features:
● 4 numerical features: Zenith (MinMax scaling), Azimuth (MinMax scaling), Energy (MinMax scaling), 

Xmax (Standard scaling)
● 4 images: Max local method, Max global method, Log max local method, Log max global 

method

Labels: Particle type (Proton - 0, Iron - 1)

Next steps:
1. Data exploration and preprocessing: This includes tasks such as applying log10 

transformations and feature scaling.
2. Splitting the data: Dividing the data into training and test sets (70% - 30%).
3. Create the dataset: Dataset used for training and testing
4. Training of the convolutional neural network (CNN): Using a modified architecture of a 

ResNet-18 CNN to train on the labeled training data for image classification between primary 
particles; ResNet-18 was chosen due to its simplicity and wide applicability in image 
recognition tasks; it also gave the best preliminary results

5. Evaluation of the CNN



● A convolutional neural network (CNN) is an algorithm used in image recognition and processing that is 
inspired by the biological processes in the visual cortex of animals. They are made up of neurons that 
have learnable weights and biases.

● The model we use, ResNet-18, is a public CNN, 18 layers deep, with the first convolutional layer 
switched for one with 4 input channels (for each imaging method)

Previous work: Convolutional Neural Networks



4 input 
images

Previous work: CNN architecture
CrossEntropyLoss loss function
AdamW optimizer with a learning 
rate of 0.001 and a weight decay of 
0.01

4 numerical 
features

Ref. 6



Previous work: Training and evaluation

True Positive (TP):

- predicted label = actual label

True Negative (TN):

- predicted label != actual label

False Negative (FN):

- samples with a given label 
that have been incorrectly 
labeled 

False Positive (FP):

- samples incorrectly labeled 
as a given label

● An epoch in machine learning is one complete pass through the entire training 
dataset. For example, if we are training a model on a 1000 samples dataset, one 
epoch would involve training on all 1000 samples at one time.

● The model’s weights are updated based on the training data during each epoch, and 
the model’s performance is evaluated on the training and validation sets.



Previous work: Nuclear composition classification - Results 

● The test errors for both proton 
and iron follow a similar 
decreasing trend, stabilizing 
around 10%

● The MCC increases rapidly and stabilizes around 0.8, indicating a 
strong correlation between predicted and actual values. 

● Accuracy and F1 Scores increase sharply at the beginning and 
stabilize around 0.9, indicating a good balance between precision 
and recall, and that the model performs well on the classification 
task.Ref. 6



Current work: Data exploration and preprocessing 

● Proton - 0, Iron - 1, Helium - 2, Nitrogen - 3
● Weaker correlation between nuclear composition and shower maximum depth 

and energy, indicating similarities between the previous primaries and the newly 
included ones. 

Proton: 1996
Iron: 1099
Helium: 1161
Nitrogen: 2000



Current work: Data exploration and preprocessing 
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Current work: Data exploration and preprocessing 



Current work: Data exploration and preprocessing
● The mass of UHECR particles directly relates to its shower-maximum depth in the atmosphere.
● The number of protons heavily influences the accuracy with which different particles are being 

recognized by the Machine Learning algorithm.



Current work: Nuclear composition classification of UHECRs 

● Test errors decrease rapidly, then fluctuate in the 20-50% range for Proton, Nitrogen 
and Iron, and keep above 90% for Helium.

● This could be because of the similarity between Proton and Helium.

● Proton - Iron - Helium - Nitrogen



Current work: Nuclear composition classification of UHECRs 

● Similar characteristics, different numbers of samples (Proton - 1996, Helium - 1161)

● Proton - Helium 



Current work: Nuclear composition classification of UHECRs 

● Larger difference in nuclear mass, different numbers of samples (Iron - 1099, Nitrogen - 
2000)

● Iron -  Nitrogen



Current work: Nuclear composition classification of UHECRs 

● Larger difference in nuclear mass, but not as large as for proton-iron or helium-iron 
pairings, similar numbers of samples (Proton - 1996, Nitrogen - 2000)

● Proton - Nitrogen



Current work: Nuclear composition classification of UHECRs 

● Large difference in nuclear mass, comparable with the previous proton-iron pairing, 
similar numbers of samples (Iron - 1099, Helium - 1161)

● Iron - Helium



Conclusions

● The scope is to develop a framework for cosmic 
ray classification that works on multiple primary 
particles.

● Next steps:
○ Move training on CUDA/GPU instead of CPU
○ Test with a larger and more balanced simulation 

dataset.
○ Improve CNN model accuracy on the dataset (Grid 

search, data augmentation)
○ Add the number of muons from the air shower as a 

feature for training.
● This work serves as a Computer Science 

Bachelor’s Thesis to be finished by summer 2025.

Particles in 
dataset

Error 
[%]

Metric
MCC | F1 | Acc

P-Ir (initial) 10 0.82 | 0.91 | 0.91

P-Ir-He-N 44 0.28 | 0.45 | 0.47

P-He 39 0.18 | 0.60 | 0.61

Ir-N 22 0.50 | 0.79 | 0.79

P-N 22 0.57 | 0.79 | 0.79

Ir-He 18 0.76 | 0.83 | 0.83
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Thank you! Questions?


