

IceTop gamma-hadron separation and angular error estimation using machine learning techniques

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

- Sebastian Vergara Carrasco
- University of Canterbury, Christchurch, New Zealand
- Hybrid Workshop on Machine Learning for Cosmic Particles, Delaware, 27-31 Jan 2025

Introduction

- Pulses in IceTop are either classified as HLC (two tanks hit within 1 microsecond in one station) or SLC (only one tank hit in a station).
- Observables such as the direction, primary energy proxy and shower core position are reconstructed using IceTop HLC pulses.

Dataset

- Gamma-induced and proton-induced air shower simulations produced by Federico Bontempo from 4.0 ≤ log₁₀(E/GeV) ≤ 7.0 for 2012.
- Using sibyll2.3d as hadronic model
- This data is regularly split into energy bins of 0.1 in log₁₀(E/GeV). A certain energy bin will be referred to as E bin number, e.g. E6.9 represents the energy bin 6.9 ≤ log₁₀(E/GeV) ≤ 7.0.
- Standard IceTop quality cuts are applied throughout, these are:
 - Radius < 500 m
 - Zenith < 38 degrees
 - Fit status = OK
- This means the number of events after quality cuts is:
 - Gamma: 238528
 - Proton: 208203
 - Total: 446731

CNN for separation - inputs

CNN Architecture

- Final two layers are both fully connected layers. Output layer has two outputs, proton probability and gamma probability.
- Regularization includes dropout layer, weight decay and a learning rate scheduler.
- Using cross entropy loss, initial learning rate of 0.001.

three separate models.

ICECUBE

CNN results

6 29/01/2025 Sebastian Vergara Carrasco - sebastian.vergaracarrasco@pg.canterbury.ac.nz

6.0

5.5

 $log_{10}(E_{MC}/GeV)$

5.0

University of Canterbury

Only HLC pulses

6.0

HLC and cleaned SLC pulses HLC and raw SLC pulses

6.5

7.0

ICECUBE

IceCube work in progress 100 IceCube work in progress Only HLC pulses HLC and cleaned SLC pulses 1.2 HLC and raw SLC pulses 90 1.0 Accuracy (%) 80 0.8 Loss 0.6 70 0.4 60

6.5

50

4.0

7.0

4.5

5.0

5.5

 $log_{10}(E_{MC}/GeV)$

• Final metric value after 30 epochs per energy.

CNN results

0.2

4.0

4.5

CNN feature attribution

• Shows what areas the CNN focused on. Blue being positive, red being negative. E6.9 bin.

8 29/01/2025 Sebastian Vergara Carrasco - sebastian.vergaracarrasco@pg.canterbury.ac.nz

- Use the probability output of the CNN as an input into a FCNN can directly input into previous models.
 - CNN output S₁₂₅ Total in-ice charge (for contained events) Total in-ice charge (for contained events) Total in-ice charge (for contained events)
- Ensure this provides the strongest result for uncontained events test on real data and train on contained/uncontained events.
- Possibly create two models, one for contained one for uncontained?

ICECUBE

What next?

Angular error estimation

 Is it possible to estimate the accuracy of our reconstructed direction on an event-by-event basis?

 $\boldsymbol{n} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \sin(\theta) \cdot \cos(\phi) \\ \sin(\theta) \cdot \sin(\phi) \\ \cos(\theta) \end{bmatrix}, \qquad \qquad \theta_{\rm res} = \cos^{-1} \left(\boldsymbol{n}_{\rm true} \cdot \boldsymbol{n}_{\rm reco} \right) \cdot \frac{180}{\pi}.$

- To try and capture a general trend for opening angle (angular error) by creating a spline over specific parameter spaces. Namely:
 - Energy

- S₁₂₅ (energy proxy)
- True zenith

- Reco zenith
- Chi2 time (from direction fit)
- Also experimented in log space.
- Within the parameter space we take the average angular error values of all events falling in a specific bin, ranging our number of bins for each space from 5 to 50.

Angular error spline fit

• Example: true energy vs true zenith spline approximation for different bin values. Is there a better way?

University of Canterbury

BDT for angular error

- Trying to get a BDT to estimate the angular error of directional reconstruction.
- Only using HLC pulses for the gamma dataset.
- Varied many of the feature inputs, based on feature important plots and parameter distributions.
- Also tried regularization techniques such as varying values for L1 (lasso) and L2 (ridge).
- To optimize hyperparameters, used in-built randomized search and grid search from XGBoost. These include:
 - Num estimators
- Learning rate
- Colsample by tree Alpha (L1)
- arning rate
- Max depth
- Lambda (L2)

• Min child weight

BDT results – basic

UNIVERSITY OF CANTERBURY

Test Root Mean Squared Error (RMSE): 0.6504 degrees Test R-squared (R²): 0.4529 Train Root Mean Squared Error (RMSE): 0.6359 degrees Train R-squared (R²): 0.5144

BDT results – extra pulse info

Test Root Mean Squared Error (RMSE): 0.6357 degrees Test R-squared (R²): 0.4773 Train Root Mean Squared Error (RMSE): 0.6025 degrees Train R-squared (R²): 0.5641

BDT results – compare to spline fit

Summary and outlook

CNN for gamma/hadron discrimination:

- Using the distributions of charge, time and lateral distance in a CNN for gamma/hadron separation gives promising results as an initial prediction.
- Using SLC pulses within the CNN gives further improvements on discrimination at higher energies, still struggling at lower energies.
- Next step is to integrate into previous methods using in-ice within a FCNN, compare results.

BDT for angular error estimation:

- Works better than sampling from multidimensional splines, but still not necessarily a great result.
- Requires testing on real data, specifically the reconstructed parameter distributions.

Backup slides

University of Canterbury

Previous work

- 1. Search for PeV Gamma rays and astrophysical neutrinos with IceTop and IceCube Hershal Pandya PhD.
 - Created the IT-LLHR method. Our method is based off of this approach.
 - He created probability distribution functions (PDFs) using a certain percentage of the data to form the hypothesis, then compared each event bin by bin to form the likelihood value.

$$L_{QR}(\text{event}|H) = \prod_{i=1}^{162} P(Q_i, |R_i|H), \qquad \Lambda_{QR} = \log_{10} \left(\frac{L_{QR}(\text{event}|H_{\gamma})}{L_{QR}(\text{event}|H_{CR})} \right), \qquad \Lambda = \Lambda_{QR} + \Lambda_{Q\Delta T} + \Lambda_{\Delta TR}$$

- 2. Search for PeV Gamma rays with the IceCube observatory Zachary Dean Griffith PhD.
 - Focused on using ML for gamma-hadron separation, specifically a random forest using multiple reconstructed variables, also Hershals IT-LLHR
- 3. Federico Bontempo PhD.
 - Continued using ML for gamma-hadron separation, expanding on previous work. Used 2d surface maps in a CNN as in input for a fully connected NN.

CNN feature attribution

• E5.0 bin

Extra feature attribution distributions

UNIVERSITY OF CANTERBURY

Sebastian Vergara Carrasco - sebastian.vergaracarrasco@pg.canterbury.ac.nz 20 29/01/2025

- top right threshold is extremely low everything classified as positive.
- True Positive rate = True Positives / (True Positives + False Negatives)
- False Positive rate = False Positives / (False Positives + True Negatives)
- Area under the curve closer to 1 indicates a much better model

label 1, it is the positive case. Generated by varying the classification threshold.

- Thus:
- bottom left threshold is extremely high everything is classified as negative

Receiver operating characteristic (ROC) curves comparing E6.9 models. As gamma is given the

ROC curves

ICECUBE

ROC curves

• What about other energies?

Confusion matrices

University of Canterbury

Chi2 distribution

ICECUBE