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Outline

�� KASCADE experimen�
�� Mass composition reconstructio�

�� ML methods in detai�
�� Unfoldin�

�� Results & Conclusion

Kuznetsov, M. et al (2024). Methods of machine learning for the analysis of cosmic rays mass composition with the 
KASCADE experiment data. Journal of Instrumentation, 19(01), P01025. doi:10.1088/1748-0221/19/01/p01025

Kuznetsov, M. et al (2024). Energy spectra of elemental groups of cosmic rays with the KASCADE experiment data and 
machine learning. Journal of Cosmology and Astroparticle Physics, 2024(05), 125. doi:10.1088/1475-7516/2024/05/125
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KASCADE

KASCADE scheme

(green − e/γ and μ detectors, red − e/γ only)

KASCADE is an extensive air shower 
experiment that was located  
in KIT Campus, Karlsruhe, Germany 
(1996 - 2013)

KASCADE array: 252 scintillator 
detectors placed in a rectangular grid  
at 13 m intervals and covering a total 
area of 200 × 200 m2 in total.

Energy range: ~ 500 TeV — 100 PeV
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Experimental data & Monte Carlo

provided by KCDC*

� θ < 18�
� log10 Ne > 4.�
� log10 Nμ > 3.�
� √(x2 + y2) < 91 �
� 0.2 < s < 1.48
Quality cuts (for data and MC)Event structure

3 arrays 16x16 shape (arrival times; e/γ, μ deposits)

reconstructed features (E, θ, φ, x, y, Ne, Nμ, s)
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Experimental event example

* A.Haungs et al; Eur. Phys. J. C (2018) 78:741; The KASCADE Cosmic ray Data Centre KCDC:  
granting open access to astroparticle physics research data, doi: 10.1140/epjc/s10052-018-6221-2

https://link.springer.com/article/10.1140/epjc/s10052-018-6221-2
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Datasets
Experimental dataset

~ 8.5M events in total (after quality cuts)

Unblind: 
20%

Blind: 
80%

Monte Carlo datasets (protons, He, C, Si, Fe)
CORSIKA + detector simulation

QGSJet-II.04 ~ 180k events EPOS-LHCSibyll 2.3c

QGSJet-II.02
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Mass composition reconstruction
Main stages:

�� Unfolding (particle and energy)
Bayesian iterative approach*

�� Event-by-event classification (particle type: p, He, C, Si, Fe)

Random Forest
baseline model

input: x, y, E, Ne, Nμ, θ, φ, s

Multi-Layer Perceptron (MLP)
exploits spacial-specific info

input: deposit arrays [flatten] + θ, φ

Convolutional NN (CNN)
inspired by LeNet-5 (~30k parameters)

input: deposit arrays [2x16x16] + Ne, Nμ, θ, s

EfficientNet v2
common standard architecture

input: deposit arrays [2x16x16] + θ, φ

means selected classifier
* G. D’Agostini. A Multidimensional unfolding method based on Bayes’ theorem. Nucl. 
Instrum. Meth. A, 362:487–498, 1995. doi:10.1016/0168-9002(95)00274-X.
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CNN confusion matrix

for QGSJet-II.04 hadronic interaction model 
(here and another extra cut at log10 (E/GeV) > 6.15)

Quality

Estimate the performance of the ML 
classifier using the confusion matrix
� The more diagonal, the better
� 0.2 in each cell is a random guess

Training

Normalize features

Maximize train sample
� Expand selections: θ < 30°
� Augment data: rotations

Event-by-event classification
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Ablation study
Impact of the individual input features

Train and test CNN with deposits only and 
reconstructed features only

CNN is stable with exclusion features except 
for the zenith angle.

Missing detectors study

Compare CNN performance on default and 
“corrupted” datasets

Decrease of diagonal cells of the confusion 
matrices by up to 4%

The more energetic  showers are  better classified

Energy dependence
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Test: QGSJet-II.04 Test: EPOS-LHC Test: Sybill 2.3c

Cross-hadronic reconstruction

Test the same CNN (trained on QGSJet-II.04) on different hadronic models

EPOS-LHC predicts “lighter” composition  (vs QGSJet-II.04), Sibyll 2.3c -> “harder”
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Folded energy spectra

Folded energy spectra, unblind experimental data

(CNN, trained with QGSJet-II.04)

Folded spectra means the 
spectra obtained by the 
direct predictions of the 
classifier

Unblind set is 20% of the 
total experimental data
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Unfolding

We reconstruct mass composition spectra 
with unfolding procedure

We apply consequently two unfoldings:
energy unfolding
particle type unfolding

We use iterative bayesian unfolding 
method from pyunfold* package

a correction to the confusion matrix

Energy resolution (default KASCADE 
reconstruction, QGSJet-II.02)

* James Bourbeau and Zigfried Hampel-Arias. Pyunfold: A python package for iterative unfolding. 
The Journal of Open Source Software, 3(26):741, June 2018. doi:10.21105/joss.00741
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QGSJet-II.02 comparison

He C

Si Fe

All-particle

protons
* Apel, W. D. et al. (2013). KASCADE-Grande measurements of energy 
spectra for elemental groups of cosmic rays. Astropart. Physics, 47, 54–66. 
doi:10.1016/j.astropartphys.2013.06.004

One-to-one comparison of  (orange, unblind 
data) and  spectra* (blue, QGSJet-II.02 
hadronic interaction model) 

this work
original KASCADE
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Results (QGSJet-II.04, EPOS-LHC, Sibyll 2.3c)

All-particle

Reconstructed all-particle energy spectrum in this  
(orange, blind data, QGSJet-II.04, EPOS-LHC, Sibyll 2.3c)  

and original KASCADE (blue, QGSJet-II.02)

Theoretical uncertainties
A range between the minimum and 
maximum edges of the "basic" 
systematic uncertainty bands among all 
hadronic models used (hatches in fig.)

Our (orange) points, error bars, 
solid bands for QGSJet-II.04
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Results (QGSJet-II.04, EPOS-LHC, Sibyll 2.3c)

Orange: reconstructed spectra for QGSJet-II.04 on 
blind data with theoretical systematics (hatch)

Original KASCADE results (blue, QGSJet-II.02) for 
illustration purposes

He C

Si Feprotons
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Knee-like structure search

Individual mass component spectra. Power-law (PL, blue dash) and  broken power-law (BPL, black solid) fits.

� Spectra of the proton and helium components show knee-like 
features (5.2σ and 3.9σ respectively�

� Iron component shows a hint (2.4σ) of the break at ∼ 4.5 Pe�
� No breaks are observed in the spectra of other components
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〈lnA〉 comparison

These results are in partial agreement with IceTop and TALE

EPOS-LHC closer to TALE, а Sibyll 2.3c — to IceTop

LHAASO collaboration, Phys. Rev. Lett. 132 (2024) 131002 [2403.10010]

Telescope Array collaboration, Astrophys. J. 909 (2021) 178 [2012.10372]

Aartsen, M. et al, Phys. Rev. D, 100(8), 082002.
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Conclusion

Thanks for your attention!

� We reanalyzed data of KASCADE cosmic ray experimen�
� We reconstructed cosmic ray mass components spectra for post-LHC 

hadronic interaction models (QGSJet-II.04, EPOS-LHC,Sibyll 2.3c) and 
took into account these systematic�

� Basic uncertainties of the our method are much smaller than those of the 
standard KASCADE reconstructio�

� We found a significant dominance of the proton componen�
� We found highly significant knee-like features in the proton and He 

individual spectra and a hint of the break in the iron spectrum.  



QGSJet-II.04 results (only)

proton component dominates at 
energies < 10 PeV

Basic systematic uncertainties:

Missing detectors

MC mass 
composition

Limited MC

MC slope

Unfolding 
regularization

Sequential unfolding

5 – 18 %

13 – 16 %

8 – 25 %

up to 4 %

1 – 24 %

up to 8 %



IceTop comparison

p

He

CO
Fe

Orange: reconstructed 
spectra for QGSJet-II.04 
hadronic interaction 
model on blind data with 
cross-hadronic model 
systematics



Brown: IceTop results*  
(Sybill 2.1)

* Aartsen, M., & others (2019). Cosmic ray spectrum 
and composition from PeV to EeV using 3 years of data 
from IceTop and IceCube. Phys. Rev. D, 100(8), 082002.




Architectures

MLPCNN



Zenith angle dependence

6.15 < log10 (E/GeV) < 6.5 6.5 < log10 (E/GeV) < 7 7 < log10 (E/GeV) < 8

6.15 < log10 (E/GeV) < 6.5 6.5 < log10 (E/GeV) < 7 7 < log10 (E/GeV) < 8

Dependence of the ratio of the predicted 
flux to the true flux on the zenith angle θ 

for different energy ranges.  
Top for a default CNN, bottom for a CNN 

that does not use θ 



Missing detectors

Example of spoiled Monte Carlo event (dashed 
area shows detectors not working)

Confusion matrices for CNNs trained on e/γ, μ energy 
releases, before (left) and after (right) "spoiling" the dataset


