Direction and energy reconstruction with uncertainty quantification for GRAND using graph neural network Workshop on machine learning for analysis of high-energy cosmic particles

> Arsène Ferrière [1],[2] (arsene.ferriere@cea.fr) on behalf of the GRAND collaboration with contribution from Aurélien Benoit-Lévy[1]

> > [1] CEA-LIST, [2] LPNHE (Paris, France) January 29, 2025

3 orthogonal electric field measurements

e.ferriere@cea.fr)

▶ GP300 Proto alike: Hexagonal layout, 1km spacing + infill low energy events.

2/21

Bow-tie design, 3 perpendicular arms

Simulation set

From each event:

- 1. ZHAireS simulations of proton and iron EAS.
- 2. 22 $\mu V/m$ white noise mimicking galactic noise + 5ns jitter + RF chain
- 3. Compute Hilbert transform of the 2 horizontal components
- 4. Extract time and amplitude of maximum
- 5. Trigger condition : Signal \geq 30ADC for more than 5 antennas.

Trace example:

Simulation set

From each event:

- 1. ZHAireS simulations of proton and iron EAS.
- 2. 22 $\mu V/m$ white noise mimicking galactic noise + 5ns jitter + RF chain
- 3. Compute Hilbert transform of the 2 horizontal components
- 4. Extract time and amplitude of maximum
- 5. Trigger condition : Signal \geq 30ADC for more than 5 antennas.

Antenna layout

Event examples

Wide variety of events:
 Varying footprint size,
 shape, antenna multiplicity
 Constraint on the
 possible NN architecture

Objectives

Aim of this work

- Reconstruct arrival direction using deep learning
- Reconstruct energy of primary using deep learning
- Estimate uncertainties for those reconstructions

Architecture of Graph Neural Networks

Architecture of graph neural networks: 780k parameters (can be reduced to 60k) EdgeConv Layer [Abbasi et al.]: $x_{\mu}^{k+1} = \sigma \left(\frac{1}{|N_{\mu}|} \sum_{\nu \in N_{\mu}} f_{\theta}(x_{\mu}^{k}, x_{\nu}^{k})\right)$

GNN explanation

Key Steps in a GNN Layer: [Scarselli et al.]

- Message Passing: Each node aggregates information from its neighbors.
- ► Aggregation: Information is combined using a function (e.g., sum, mean, max).
- **Update:** Node embeddings are updated using a neural network (e.g., MLP).

Mathematical Formulation:

$$h_i^{(l+1)} = \sigma \big(\mathsf{AGG}_{j \in \mathcal{N}(i)} \big(f_{\omega_l}[h_i^{(l)}, h_j^{(l)}] \big) \big),$$

where:

- $h_i^{(l)}$: Node embedding at layer *l*.
- $\mathcal{N}(i)$: Neighbors of node *i*.
- *f*_{ω_l}: Is a function with trainable parameters (MLP).

▶ σ: Non-linear activation (e.g., ReLU).

Training procedure

Direction reconstruction

Reconstructing $\theta,\,\phi$: No direct reconstruction. Better in cartesian coordinates: ${\bf k}$

► Loss function
$$L(\omega) = \mathbb{E}[||\mathbf{k}_{pred} - \mathbf{k}_{sim}||^2]$$

- 5 input features: 3 antenna coordinates, arrival time, signal amplitude (normalised)
- **Training set**: 4937 events, **Validation set**: 928 events
- 10 models or more trained with different initialization/Train dataset order

Ensemble methods:

With the N models, 1 "meta model".

$$\mathbf{k}_{pred} = rac{1}{N} \sum_{i=1}^{N} \mathbf{k}_{pred,i}$$

Parameters convention

Performance

Direction reconstruction

Single model predictions μ: -0.15° σ: 1.20° μ: -0.04° σ: 1.20° μ: 1.44° 0.4 lг 0.5 0.3 -0.4 Density 700 Density 0.2 0.3 0.2 0.1 0.1 0.1 0.0 0 -2 ò -2 ò ò Residual on θ [°] $\sin(\theta)\Delta\phi$ [°] Angular error[°] Ensemble method μ: 0.02° σ: 0.94° μ: 0.92° μ : -0.21° σ : 0.64° 0.8 0.5 -0.8 0.4 0.6 Density 0.6 0.4 0.4 0.2 0.2 0.2 0.1 0.0 -0 _2 ò -2 Ó 2 ò Residual on θ [°] Angular error[°] $sin(\theta)\Delta\phi$ [°]

Training set size

Influence of training set size

Evolution of the error when increasing the training set size.

Extrapolation is no reason yet : Suggests that larger training set => Better performances.

To avoid using more simulations : Feed physical knowledge to network.

Physical knowledge

What is PWF ?

Assume the wavefront is planar:

Linear relation between timings ${\bf T},$ position ${\bf P}$ and propagation vector ${\bf k}:$

[Ferriere et al. 2025]_{12/21}

New Architecture of Graph Neural Networks : pGNN

New Architecture of Graph Neural Networks : pGNN

Performance

Direction reconstruction

Single model predictions

${\sf Performance} > 10 \text{ antennas}$

Direction reconstruction

Single model predictions

Correction of the PWF bias

PWF is known to be biased when asymmetries in the antenna footprint.

[Ferrière et al. in prep]

Uncertainty estimation

Direction reconstruction

Under Gaussian assumption : $\theta \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2)$ and $\phi \sim \mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2)$. With μ_{θ} the mean of our 32 predictions of θ and σ_{θ} their std's.

Training procedure and performances

Energy reconstruction - Work in progress

Reconstructing E ? No : Uneven distribution. Better log E.

► Loss function
$$L(\omega) = \mathbb{E}[\log \left(\frac{E_{pred}}{E_{target}}\right)^2]$$

- 5 input features: 3 antenna coordinates, arrival time, signal amplitude (normalised)
- Training set: 4937 events, Validation set: 928 events
- 10 models or more trained with different initialization/Train dataset order
- Secondary input : PWF + polynomial fit of energy from (average amplitude, maximum amplitude, number of antennas, PWF zenith angle)

 $[\]log E$ distribution

Energy resolution

Energy reconstruction - Work in progress

Total energy resolution : 19.5% For primary energy!

Conclusion

Work on realistic simulations exclusively

Results - Direction

- With GNN and ensemble methods, high direction reconstruction precision : 0.11° precision (0.07° if n_{ants} >= 10).
- Well calibrated uncertainty estimation

Results - Energy

- Energy resolution : 19.5%
- Need to be applied to EM energy
- Uncertainty estimation not yet calibrated.

Backup slides : joint trigger distribution

Joint trigger distribution

Training set size and graph structure

Direction reconstruction

Degradation of performance when lowering number of neighbours

if N_{neighbors} = 3: graph depth = 8.18
if N_{neighbors} = 8: graph depth = 3.9
if N_{neighbors} = 100: graph depth = 1.14

Ensemble size

We have a net improvement of the performances of the direction reconstruction with the same training size.

Evolution of the precision with the number of models