Optimizing a Cosmic-ray Energy Estimator with Machine learning for the HAWC observatory

Workshop on Machine Learning for Analysis of High-Energy **Cosmic Particles** University of Delaware January 30, 2025

J. Jaime (UIS), T. Capistrán* (UNITO), I. Torres (INAOE), for the HAWC Collaboration

*speaker

High Altitude Water Cherenkov

Gamma-Ray Observatory

Universidad Industrial de Santander

Gamma-ray observatories

High-Altitude Water Cherenkov (HAWC)

Latitude 19°N, Longitude = 97°W. In the Mexican state of Puebla 2hr drive East of Mexico City

Pico de Orizaba "Citlaltepetl" 5610m (18,400 ft)

Sierra Negra "Tliltepetl" 4582m (15,000 ft)

HAWC: High-Altitude Water Cherenkov

Some characteristics:

- DC > 95%
- Wide F.O.V.
- 300 WCD ->1200 PMT
- At 4,100 m.a.s.l.
- Cosmic ray energy: 1 TeV to 1 PeV

Water Cherenkov Detector (WCD)

Particle par

Light-blocking dome

Purified water

Watertight liner Photosensors Steel water tank

Photomultiplier tube (PMT) 6

Source 5 ICN/UMD cluster 5 m

Source

Analysis

3

5

ICN/UMD cluster

Calibration

5 m

Π

Event simulation detected by HAWC

Pretz, J. (2016), https://doi.org/10.22323/1.236.0025

A. Timing information allows us determine where the particle comes.

- B. Energy deposition in each PMT:
 - The shower core.
 - Gamma or Hadron?
 - Primary particle energy.

Abeysekara, A. U., et al (2023), https://doi.org/10.1016/j.nima.2023.168253

Gamma-ray

Ground-Parameter

Neural Network

Abeysekara, A. U., et al (2019), <u>https://doi.org/10.3847/1538-4357/ab2f7d</u>

Energy Estimator

Cosmic-ray

Likelihood

Alfaro, R., et al (2017), <u>https://</u> doi.org/10.1103/ PhysRevD.96.122001

This Work: **Neural Network**

Data used

Eight species simulated: Carbon, Helium, Iron, Magnesium, Neon, Oxygen, Proton, and Silicon Hadronic models employed in **CORSIKA: FLUKA & QGJET-II-04** Spectrum: **Power law** with a spectral index of **-2**, covering an energy range from **5 GeV to 2 PeV**.

Events were selected based with the following criteria:

- Successful reconstruction.
- Zenith angle between 0° and 35°.
- At least 20% of the HAWC array was involved.

Albert, A., et al (2024), https://doi.org/10.3847/1538-4357/ad5f2d

Building the model

The model was built using:

- Learning model: Supervised
- Training data: proton,
- Test data: eight particles
- Package: TMVA of ROOT
- Architecture: 14:10:10:1
- Three models operated: low, medium and high energy

Alvarado, D. A., et al (2023), <u>https://doi.org/10.22323/1.444.0402</u>

The model was built using:

- Learning model: Supervised
- Training data: eight particles,
- Test data: eight particles
- Test data: eight particles Package: TensorFlow
- Architecture: 36:256:128:64:32:1
- One model was trained

Likelihood

Neural Network trained in TMVA

Proton

lron

Neural Network trained in TensorFlow

Response Matrix

Output Distribution using one day of HAWC data

the spectrum and publication.

Summary

- the energy range of 1 TeV to 1 PeV.
- rays, improving the reconstruction according with MC simulation.
- against the recently published spectrum.

Gracias! Thank you! Grazie!

• The HAWC experiment is a state-of-the-art cosmic ray detector operating in

• A machine learning model was developed to predict the energy of cosmic

 This model was applied to one day of HAWC data to evaluate its performance with real data. We will be obtain the spectrum to validate it

Backslides

$$LIC = \log_{10} \frac{1}{compactness} = \log_{10} \frac{CxPE_{40}}{nHit}$$

$$PINC = \frac{1}{N} \sum_{i=0}^{N} \frac{[\log_{10}(q_i) - \langle \log_{10}(q_i) - \sigma^2]}{\sigma^2}$$

Figure 1. All-sky significance map in celestial coordinates, assuming a point-source hypothesis. The bright band on the left is part of the Galactic plane (see Figures 4–7), and the bright region on the right is the Galactic anticenter region containing the Crab Nebula and the Geminga halo (see Figure 3). The two off-plane hotspots are the two TeV-bright blazars Mrk 421 (right) and Mrk 501 (left).

Type of specie

The main reconstruction parameters

A. A. U. Abeysekara (2020) DOI:10.3847/1538-4357/abc2d8

Machine Learning Techniques (MLT)

