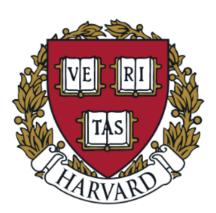
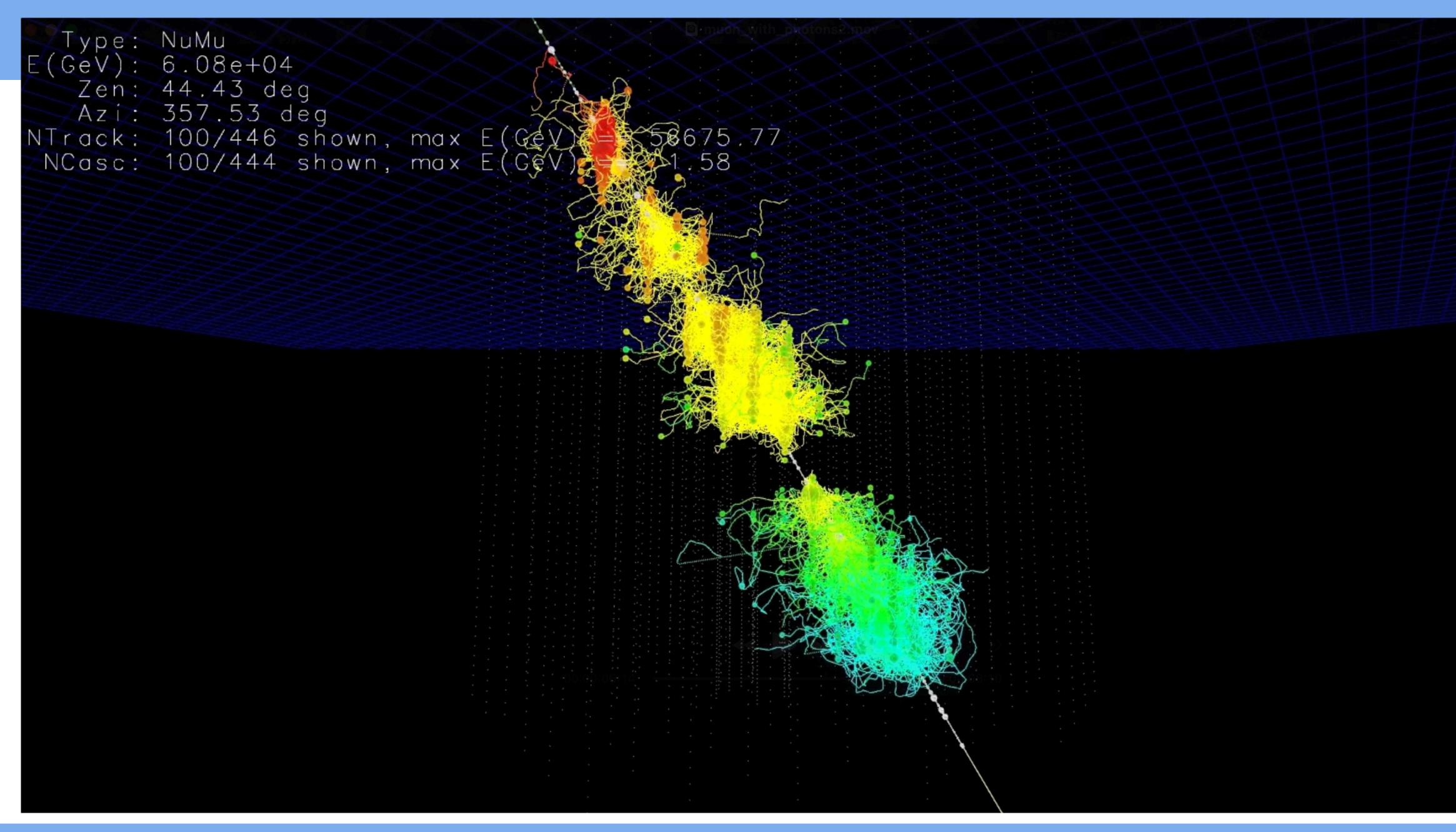


Towards improving efficiency of machine learning techniques in neutrino telescopes

Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles



Felix Yu (Harvard University) | January 28, 2025



- Two major challenges:
 - Spatial: Neutrino telescope data is extremely sparse and of large-scale
 - **Temporal**: Events can span over thousands of nano-seconds, but fine timing resolution is important for many analyses

• Resolving these issues can lead towards development of ML reconstructions that are efficient and flexible, without sacrificing too much performance.

Motivation

- Improve reconstruction speed
 - Efficient ML reconstruction of direction/energy using sparse submanifold CNNs (SSCNN)
- Representation learning
 - Learning effective and compact representations of neutrino telescope events
- Future plans for application in IceCube (WIP)
 - Fast ML at early levels in data pipeline

Outline

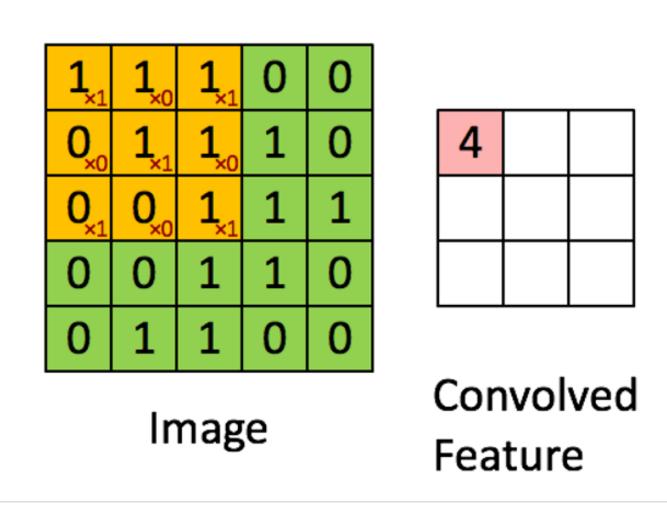
Two major challenges:

Spatial: Neutrino telescope data is extremely sparse and of large-scale **Temporal:** Events can span over thousands of nano-seconds, but fine timing resolution is important for certain analyses

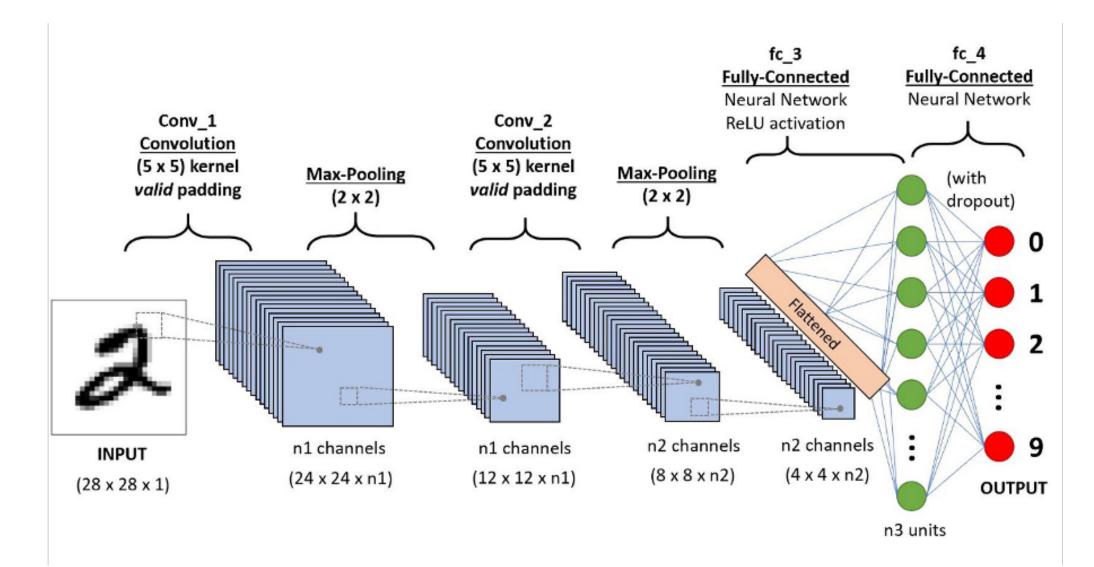


Convolutional Neural Networks

- Convolutional neural networks (CNNs) are a staple for image-like data
- layers to form a network

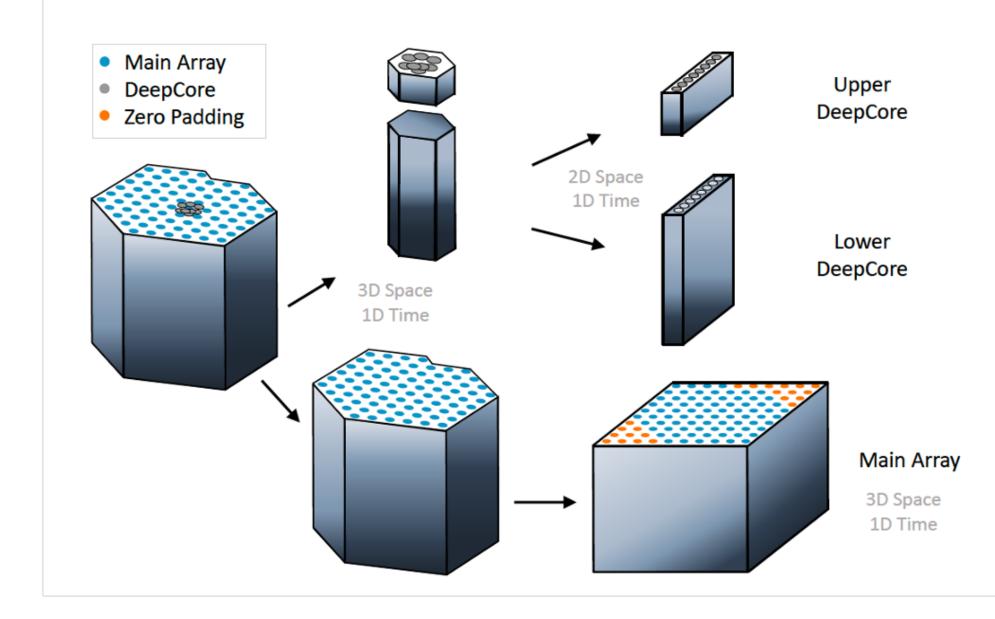


• Convolutions excel at feature extraction, which is done using kernels, and stacking

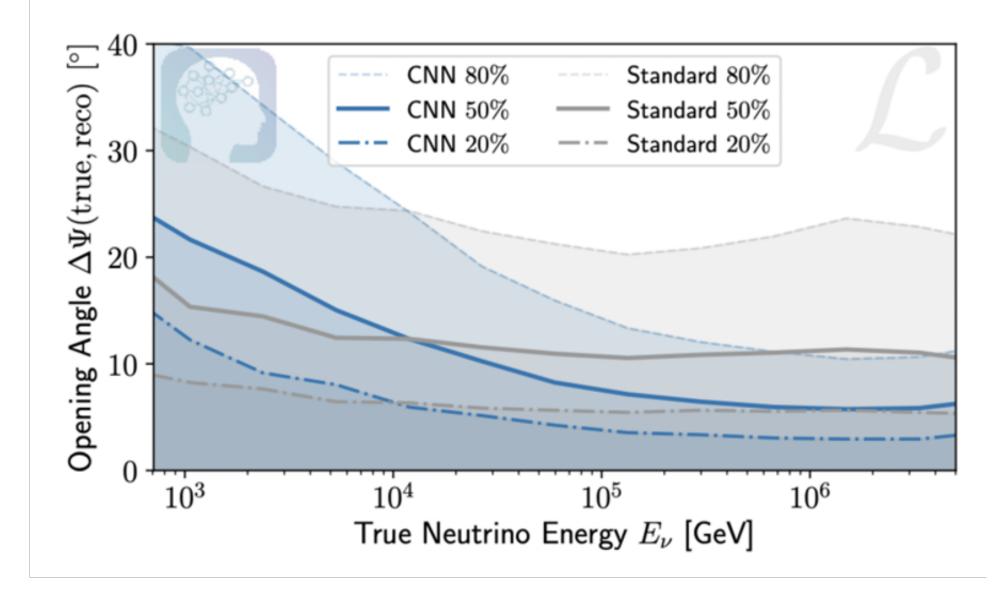


Felix Yu

CNNs have seen action in neutrino telescopes like IceCube



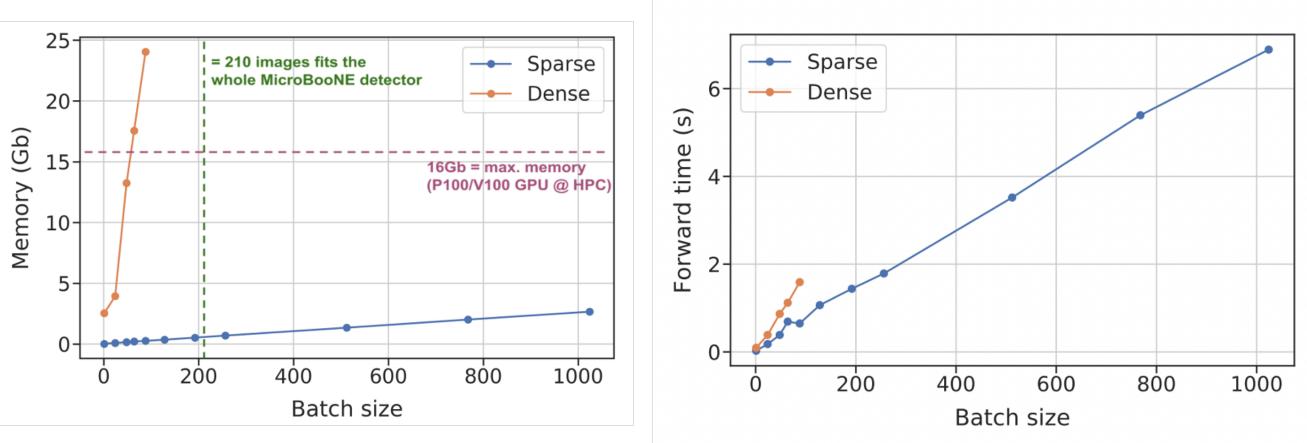
CNNs in IceCube



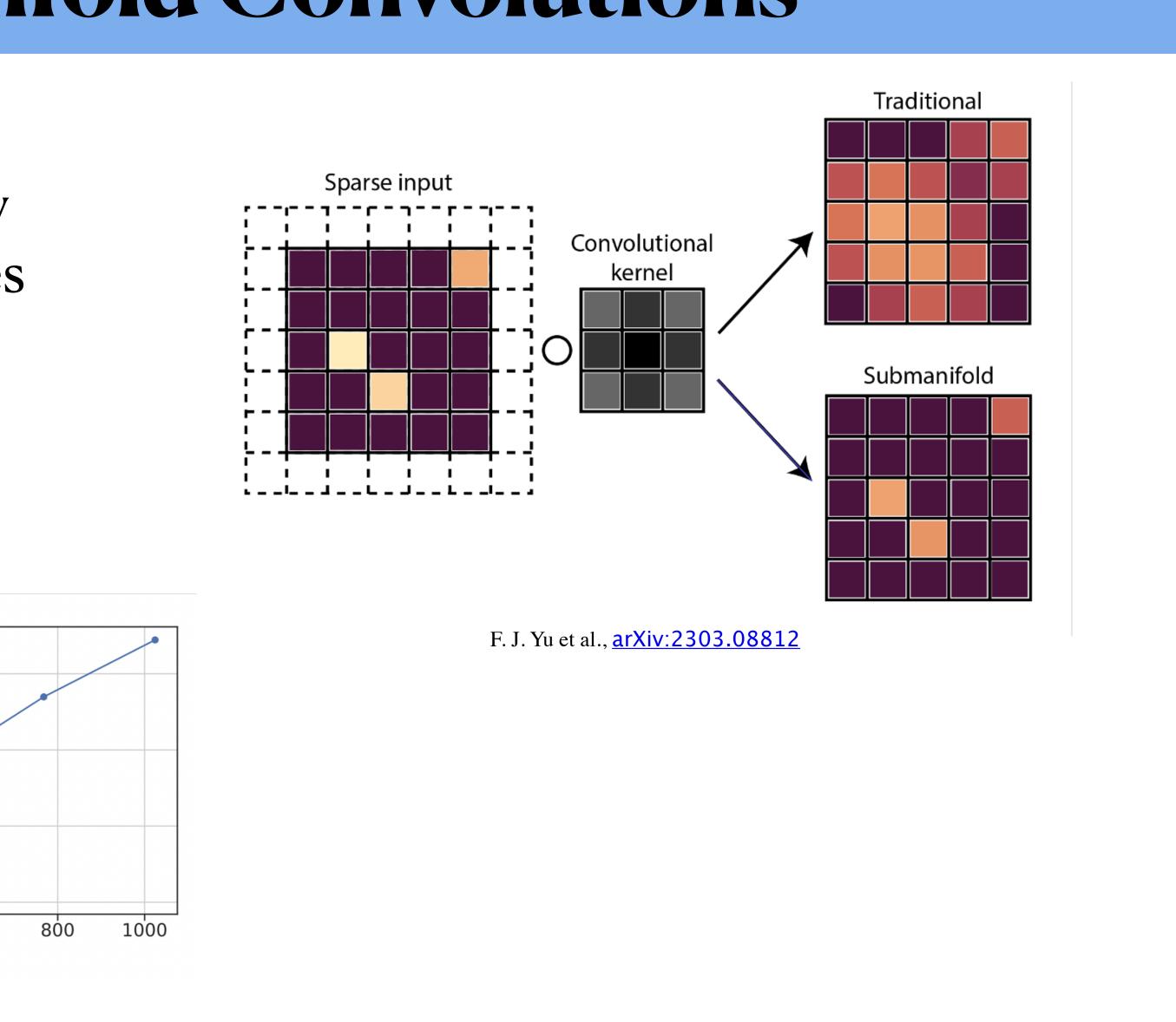
Each optical module serves as a "pixel" Sparsity problem!

Sparse Submanifold Convolutions

- Sparse submanifold convolutions only operate on non-zero input coordinates
- Very efficient for sparse data
- Deployable for inference on CPUs!



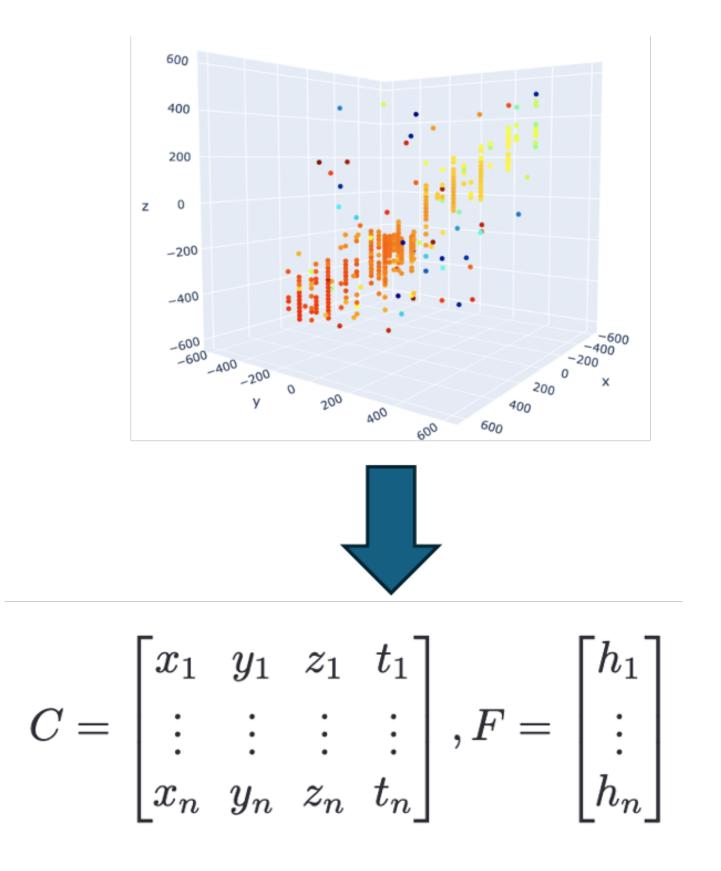
L. Domine et al., Phys. Rev. D 102, 012005



Felix Yu

Sparse Submanifold Convolutions

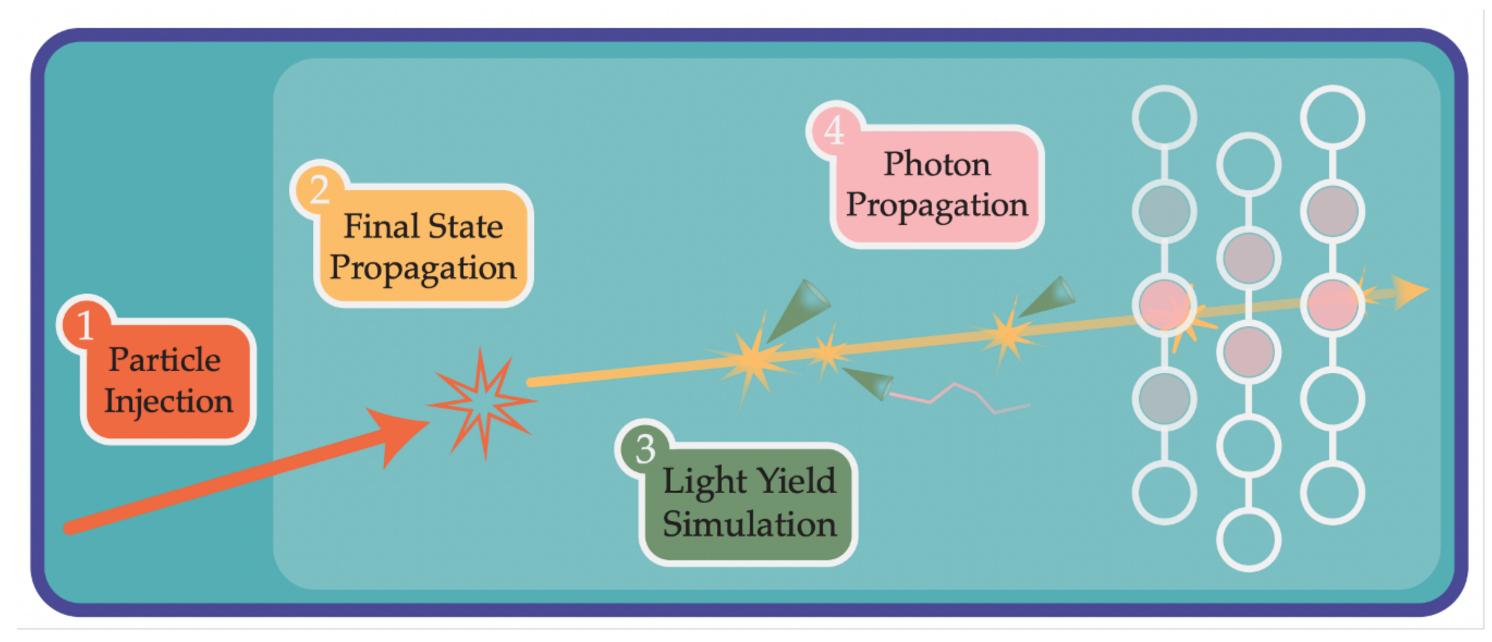
- Natural way to encode neutrino telescope data for SSCNNs is as a 4D point cloud
- Feature is the number of hits that occurred in the time bin
- Thoughts for later: Lots of hits/ pulses in the timing dimension! Can we think of ways to reduce this?



Felix Yu

Proof-of-concept study with Prometheus

- simulation software Prometheus [1]
- like parameters



[1] J. Lazar et al. arXiv:2304.14526

• We conducted a proof-of-concept study using open-source neutrino telescope

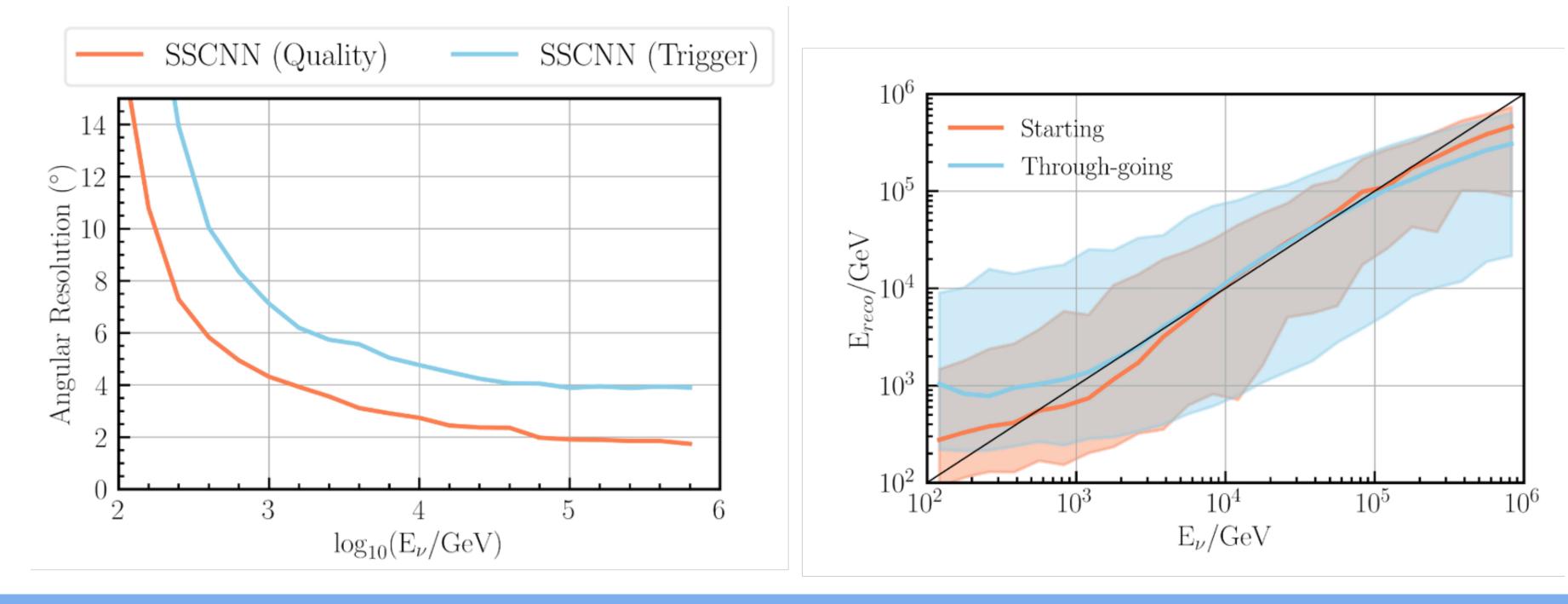
• It can simulate events for any detector configuration, we specifically used IceCube-

Energy & Angular Reconstructions

Train a 4D SSCNN to do energy and angular reconstruction on Prometheus (IceCube-like) events

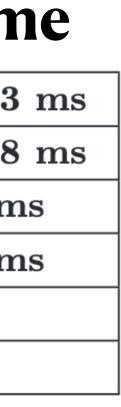
Large GPU batching (memory-efficient) allows for sub-ms per-event average runtime

< 100ms per-event average runtime on CPU sequentially (batch size of 1)



Per-event average runtime

SSCNN Angular (GPU)	$\textbf{0.101} \pm \textbf{0.003}$
SSCNN Energy (GPU)	$\textbf{0.103} \pm \textbf{0.008}$
SSCNN Angular (CPU)	$\textbf{37.7} \pm \textbf{53.4} \text{ n}$
SSCNN Energy (CPU)	$30.6\pm48.9\mathbf{n}$
Likelihood Angular (CPU)	$36 \pm 152 \text{ ms}$
Likelihood Energy (CPU)	$6.58 \pm 23 \text{ ms}$

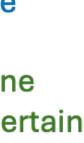


- Improve reconstruction speed
 - Efficient ML reconstruction of direction/energy using sparse submanifold CNNs (SSCNN)
- **Representation learning**
 - Learning effective and compact representations of neutrino telescope events
- Future plans for application in IceCube (WIP)
 - Fast ML at early levels in data pipeline

Outline

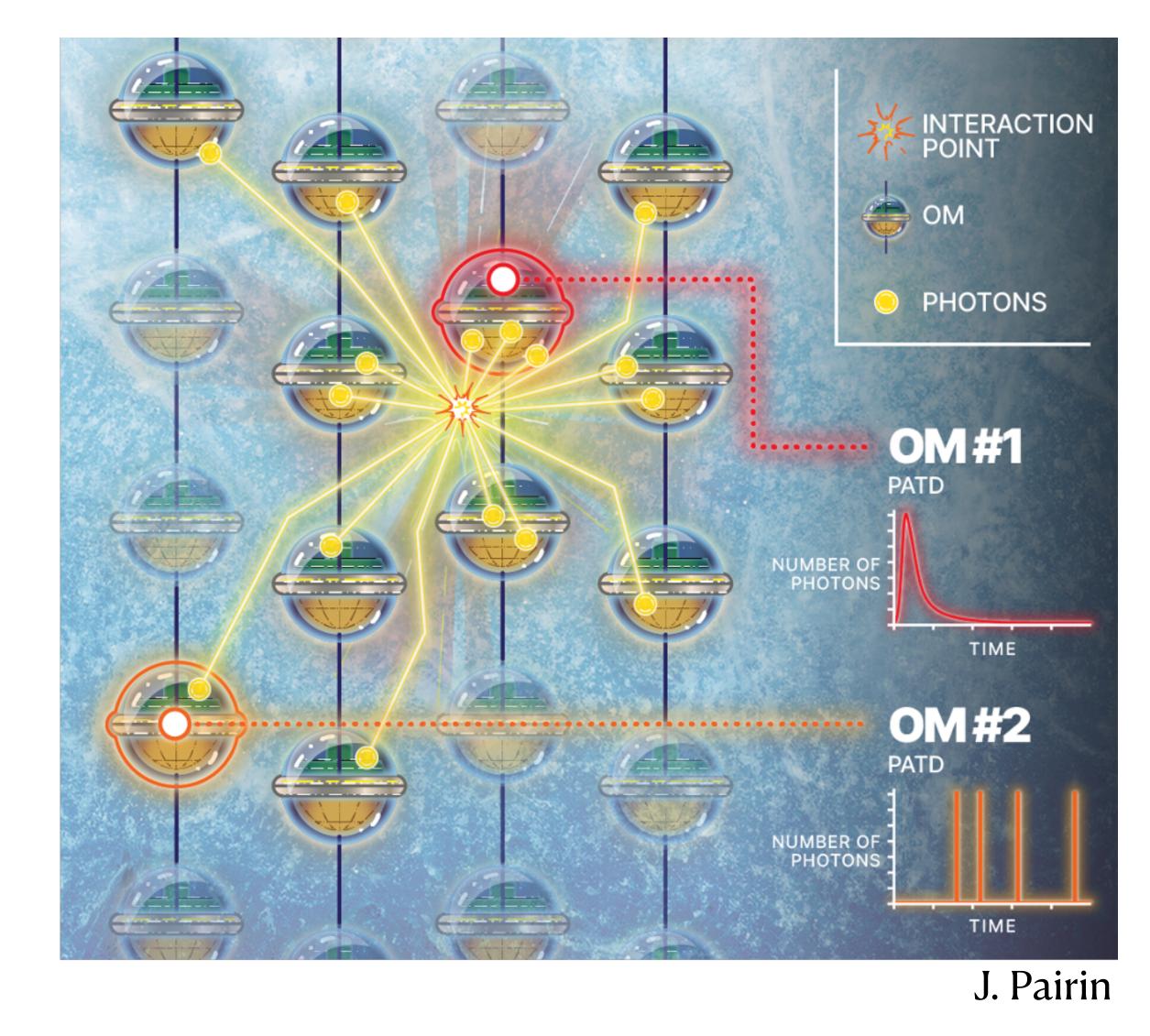
Two major challenges:

Spatial: Neutrino telescope data is extremely sparse and of large-scale **Temporal:** Events can span over thousands of nano-seconds, but fine timing resolution is important for certain analyses



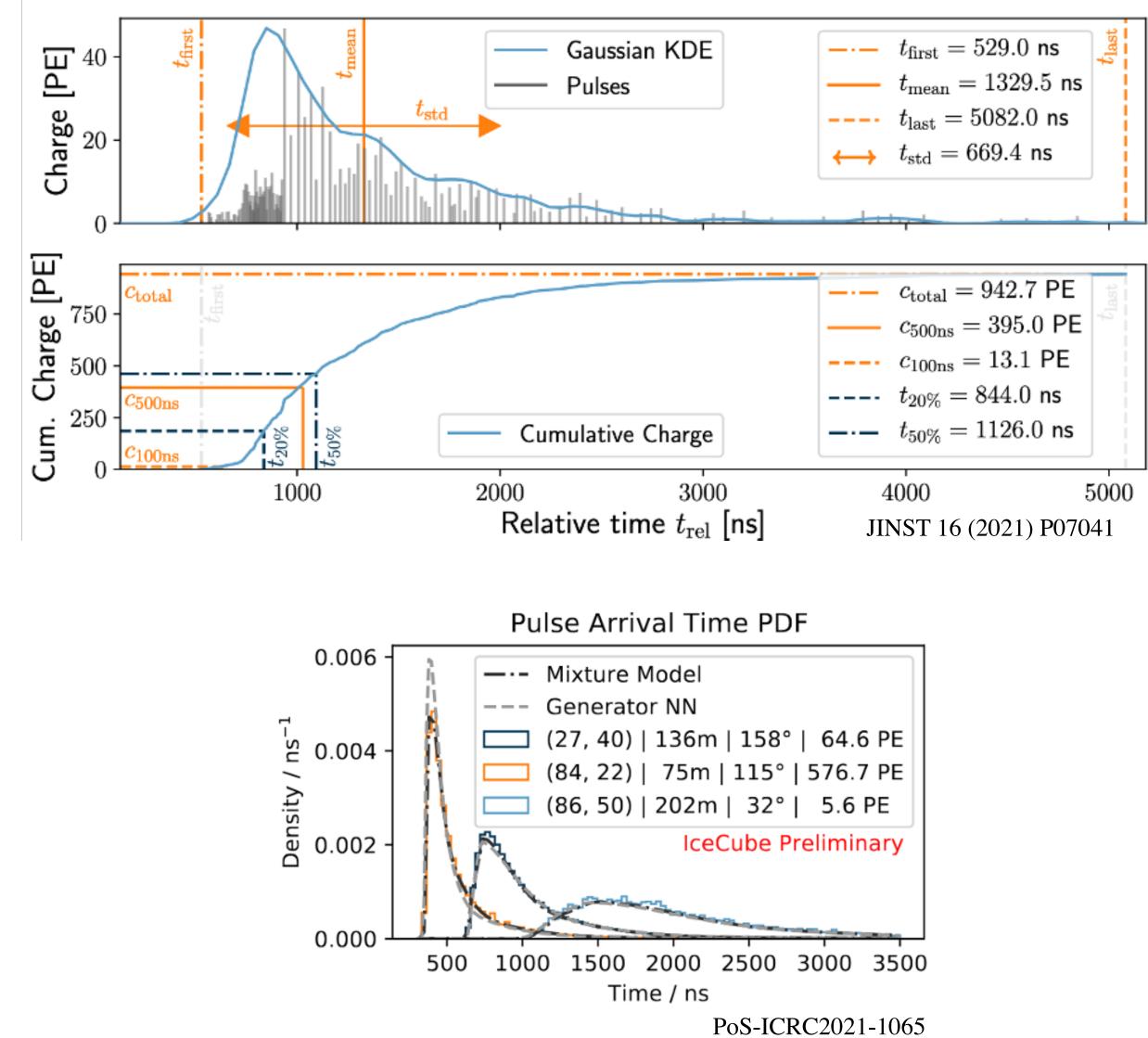
Learning Representations of Events

- We can view an event as a set of optical modules (OM) that saw light, and the series of "pulses" associated with that OM
- Computationally intensive to process all hits/pulses in a 4D manner (hundreds to thousands per OM at high energies)
- Idea: compress/summarize each OMs timing information into a fixed-size parameterization (reducing the problem from 4D -> 3D)



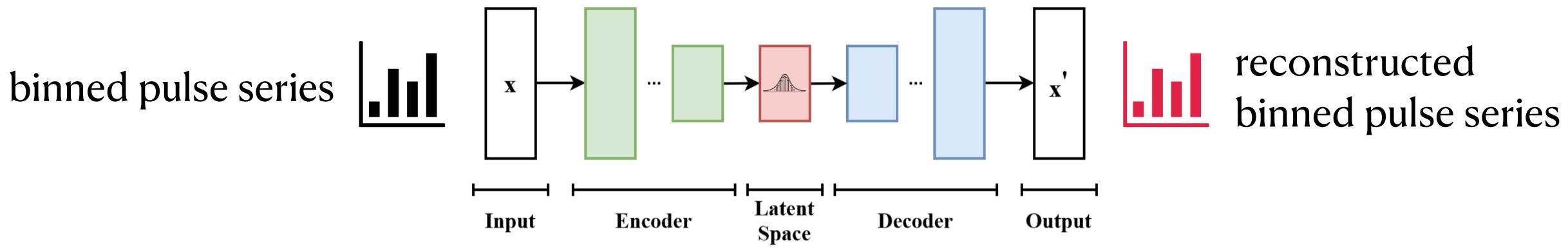
Learning Representations of Events

- Some existing solutions:
 - **Summary statistics**: 9 statistical variables derived from the pulse series
 - Asymmetric Gaussian mixture model (Event-Generator): fit the parameters of a mixture of asymmetric Gaussians using neural networks



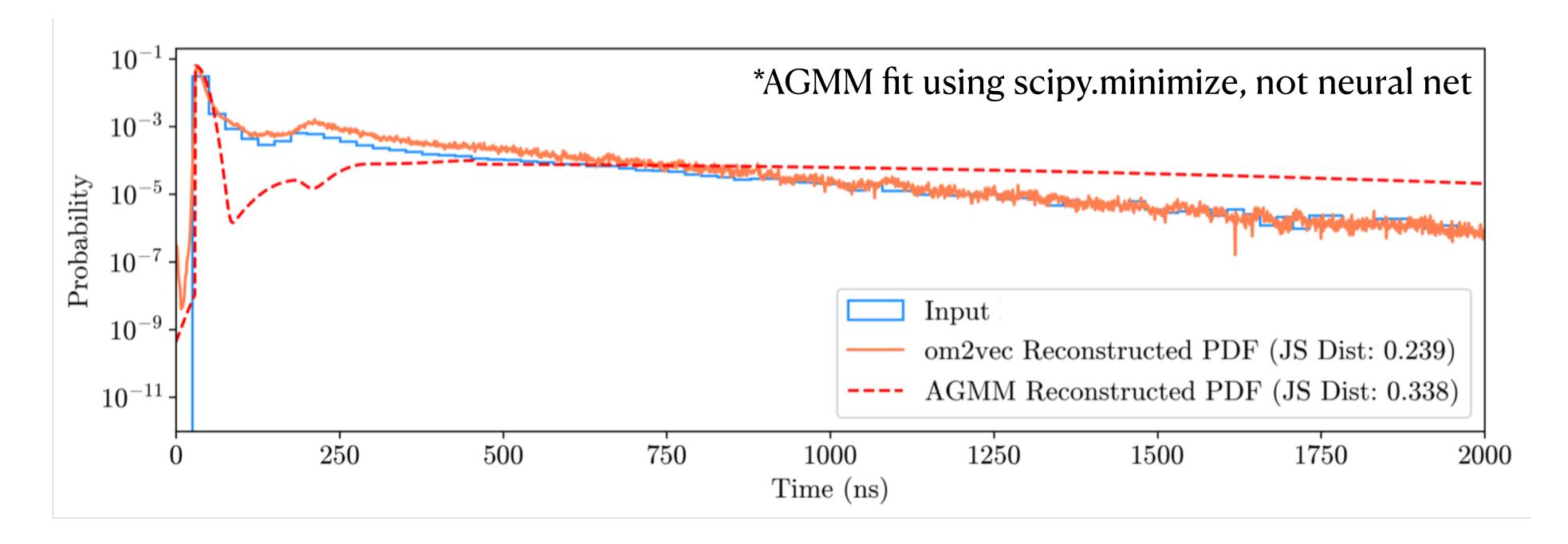
First pass: vanilla variational autoencoder

• First pass at a new idea: variational autoencoders



• VAE learns to encode and decode binned pulse series to a smaller latent space • Idea is that the latents are a information-rich **representation** of the pulse series, which we can use as an data-driven summarization of the timing information

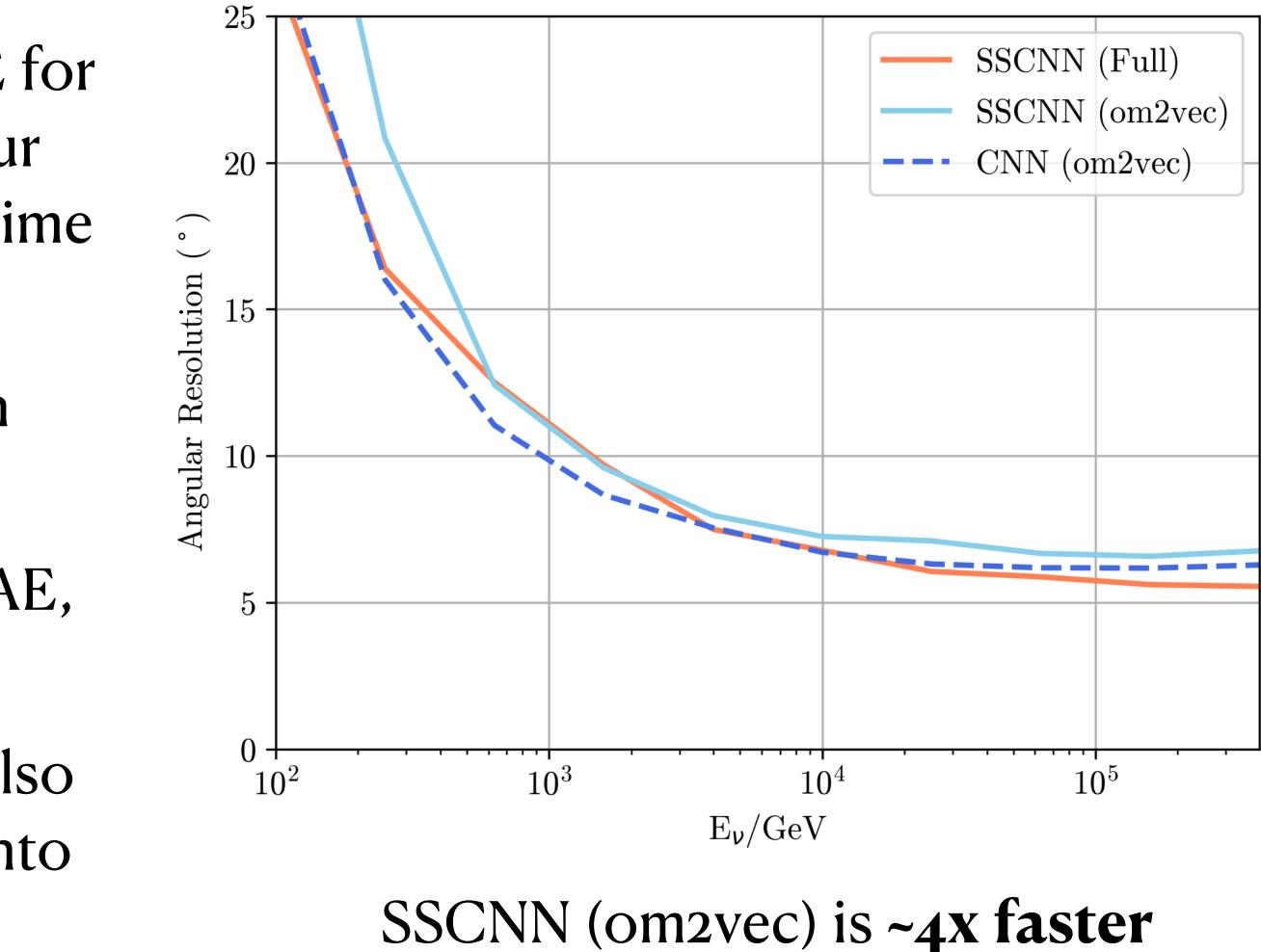
Proof-of-concept study with Prometheus



• Conducted proof-of-concept study with Prometheus events, with "om2vec" VAE **Important note**: Prometheus events use individual photons hits and not pulses (which would be data from a real experiment), so this is an idealized case study

Combining SSCNN and VAEs

- Combining SSCNN with the om2vec VAE for angular reconstruction, we can reduce our problem from 4D to 3D by reducing the time dimension:
 - **SSCNN (Full)**: is the 4D SSCNN shown previously
 - **SSCNN (om2vec)**: uses latents from VAE, summarizing the time dimension (3D)
 - CNN (om2vec): 2D standard ResNet, also using latents from VAE and arranged into 2D images



than SSCNN (Full) on GPU

- Improve reconstruction speed
 - Efficient ML reconstruction of direction/energy using sparse submanifold CNNs (SSCNN)
- Representation learning
 - Learning effective and compact representations of neutrino telescope events
- Future plans for application in IceCube (WIP)
 - Fast ML at early levels in data pipeline

Outline

Two major challenges:

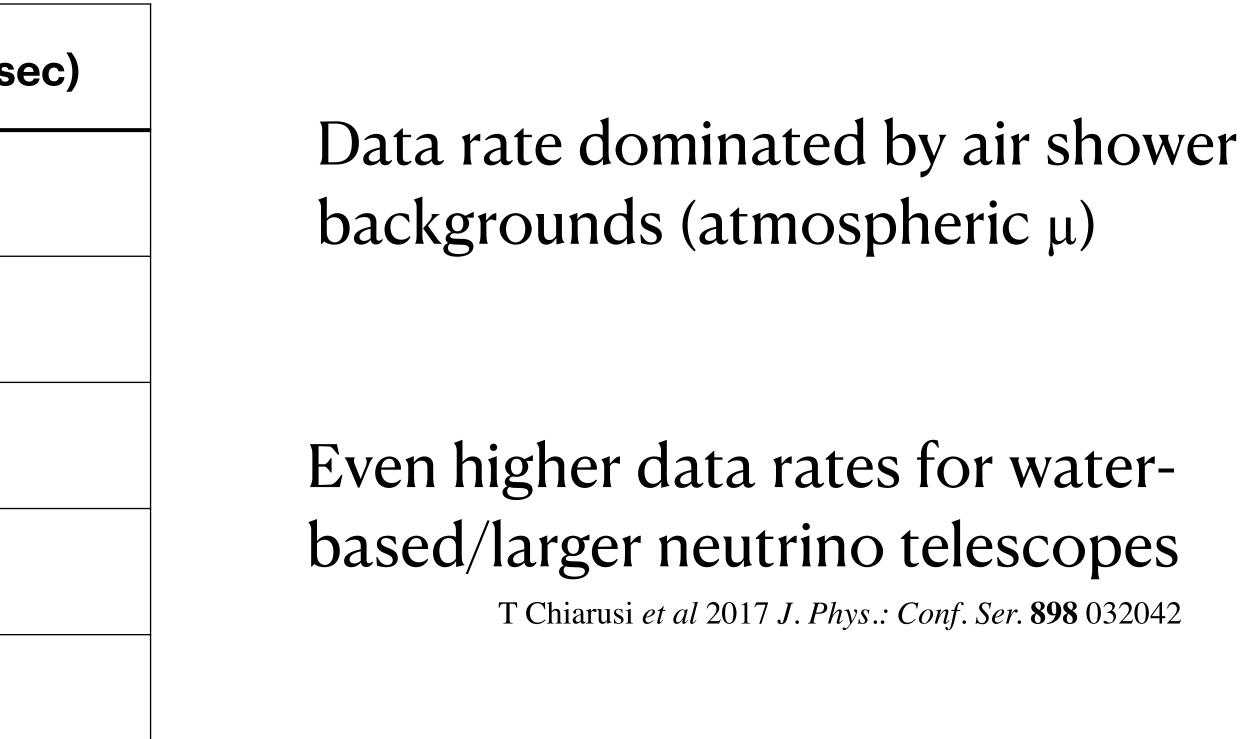
Spatial: Neutrino telescope data is extremely sparse and of large-scale **Temporal:** Events can span over thousands of nano-seconds, but fine timing resolution is important for certain analyses

IceCube has been collecting data for >10 years (>315 million seconds)

Level	Data Rate (events/s
Trigger	~2700
Muon Filter (Level 1)	~45
Muon Filter (Level 2)	~2
Analysis-specific data reduction cuts	Varies
Analysis final levels	Varies

2016 *JINST* **11** P11009

Atm. μ : Atm. ν_{μ} : Astrophysical ν_{μ} ratio is ~ 109: 103: 1

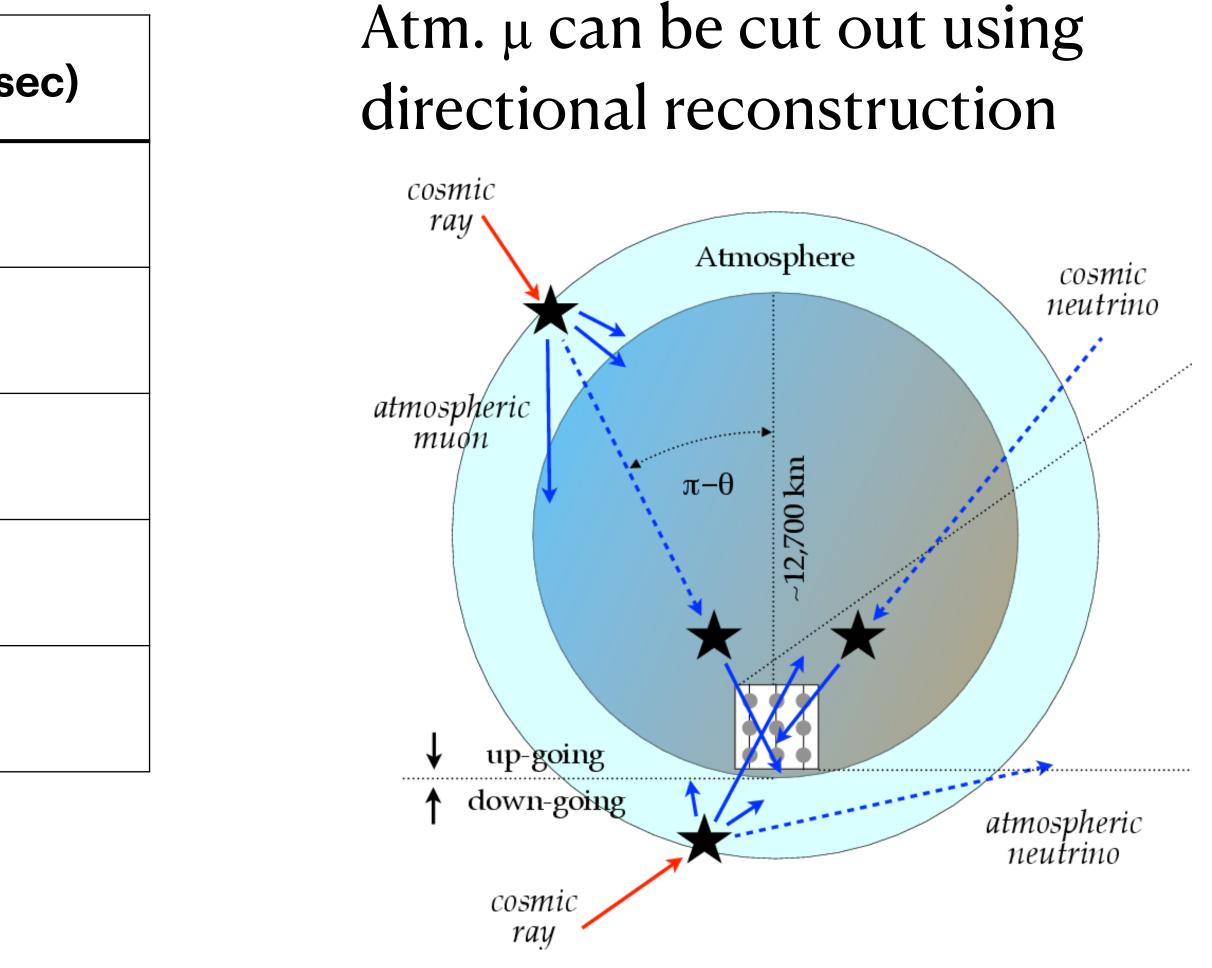


Felix Yu

IceCube has been collecting data for >10 years (>315 million seconds)

Level	Data Rate (events/s
Trigger	~2700
Muon Filter (Level 1)	~45
Muon Filter (Level 2)	~2
Analysis-specific data reduction cuts	Varies
Analysis final levels	Varies
2016 UNCT 11 D11000	

2016 JINST **11** P11009



Felix Yu

Level	Data Rate (events/sec)	Ту
Trigger	~2700	
Muon Filter (Level 1)	~45	
Muon Filter (Level 2)	~2	
Analysis-specific data reduction cuts	Varies	
Analysis final levels	Varies	Со

2016 *JINST* **11** P11009

vpical Directional Reco Method

- Simple line-fitting algorithms
- Simple maximum likelihood methods
- Complex maximum likelihood methods
- Complex maximum likelihood methods
- omplex max likelihood/ Machine learning

Usually, ML is only used after significant data reduction steps after Level 2 filters, due to GPU and runtime constraints

Filters and subsequent analysis-specific cuts rely on max-likelihood methods

Level	Data Rate (events/sec)	Ту
Trigger	~2700	
Muon Filter (Level 1)	~45	
Muon Filter (Level 2)	~2	
Analysis-specific data reduction cuts	Varies	
Analysis final levels	Varies	Со

2016 *JINST* **11** P11009

vpical Directional Reco Method

- Simple line-fitting algorithms
- Simple maximum likelihood methods
- Complex maximum likelihood methods
- Complex maximum likelihood methods

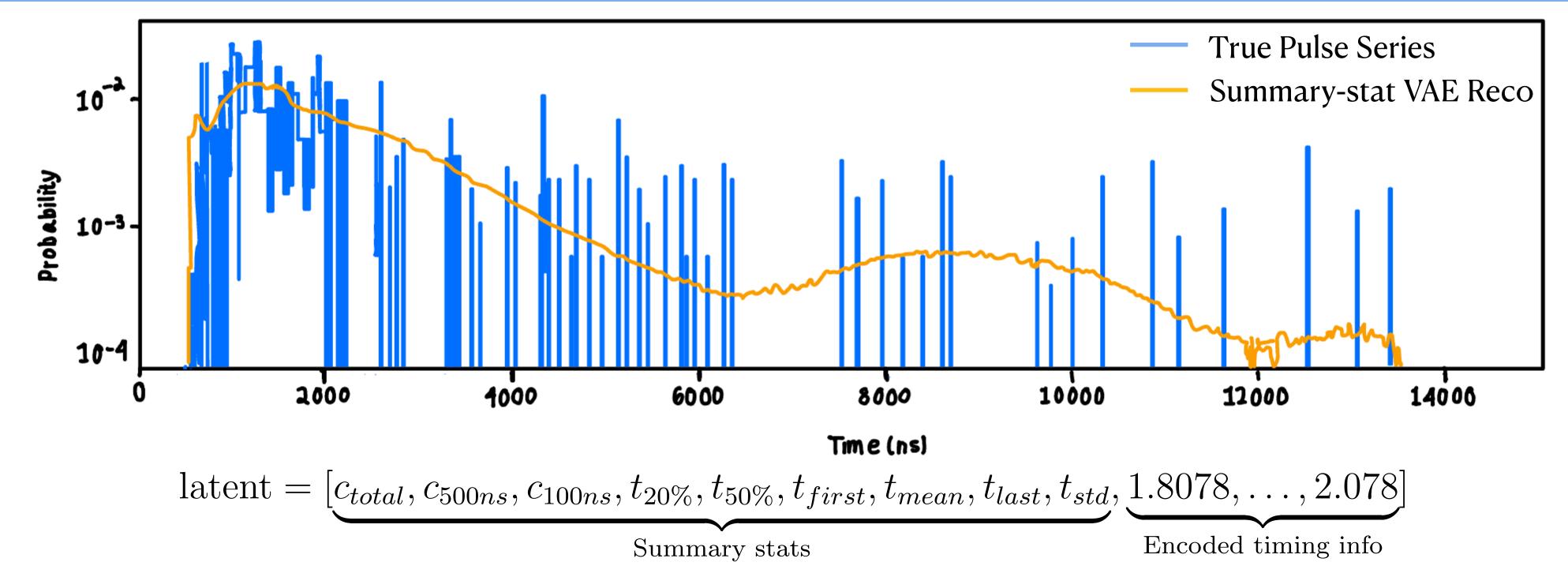
omplex max likelihood/ Machine learning

The goal is to use SSCNN, VAEs, and other fast ML techniques to push upwards in the pipeline

Fast ML

Felix Yu

Current and Future Works



- hits)
 - VAE + summary stats encoding
 - Normalizing flows?

• SSCNN implemented on IceCube data, working as expected for Level 2 Muon Filter events

• VAEs for learning representations of IceCube pulse series (WIP, difficult vs. Prometheus photon

- from fine timing resolution
- flexible, efficient and performant reconstructions

• On-going work to incorporate these ML techniques into **earlier levels** of the IceCube data pipeline

• Neutrino telescope data is spatially sparse, and many downstream tasks benefit

• These challenges can be addressed with SSCNNs and VAE latent representations for

Thank you!

felixyu@g.harvard.edu