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Towards improving efficiency of machine learning
techniques in neutrino telescopes

Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles

Felix Yu (Harvard University) | January 28, 2025
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* Two major challenges:

» Spatial: Neutrino telescope data is extremely sparse and of large-scale

* Temporal: Events can span over thousands of nano-seconds, but fine timing
resolution is important for many analyses

* Resolving these issues can lead towards development of ML reconstructions that
are efficient and flexible, without sacrificing too much performance.




* Improve reconstruction speed

» Efficient ML reconstruction of direction/energy using sparse
submanifold CNNs (SSCNN)

* Representation learning

* Learning effective and compact representations of neutrino
telescope events

* Future plans for application in IceCube (WIP)

* Fast ML at early levels in data pipeline Two major challenges:

Spatial: Neutrino telescope data is
extremely sparse and of large-scale
Temporal: Events can span over
thousands of nano-seconds, but fine
timing resolution is important for certain
analyses




* Convolutional neural networks (CNNs) are a staple for image-like data

» Convolutions excel at feature extraction, which is done using kernels, and stacking
layers to form a network

fc_3 fc_4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution . — N
i Yy
(5 x 5) kernel Max-Pooling (5x5)kernel  pay-pooling (with
4 valid padding (2x2) valid padding (2x2) >
e, S k. 9 = A
e =N = N A
e ’/ .l
R “‘-/,4'-, . ul
L |
< \\-E:\':}-l‘:-, '
| ‘ 415/11%2,'1(":1"{
______________ [ “ N :
e ,_Af """"""""" 1 - . i 3'2.‘.- i nmm—————r gl "u, |' l ";"l’t}(‘:":::h =
/A
CO nvo Ive d INPUT nl channels nl channels n2 channels n2 channels "-,fl| o Jf g
i\ .

F
OUTPUT

| *
(28 x 28 x 1) (24 x 24 x n1) (12x12xnl) (8x8xn2) (4 x4 xn2) "wf/
3 unit

Feature




e~
O

CNNs have seen action in neutrino
telescopes like IceCube
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Sparsity problem!

Each optical module serves as a “pixel”




Traditional

Sparse input

* Sparse submanifold convolutions only
operate on non-zero input coordinates BN

* Very efficient for sparse data

* Deployable for inference on CPUs!
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https://arxiv.org/abs/2303.08812

* Natural way to encode neutrino
telescope data for SSCNNs is as a 4D
point cloud

 Feature is the number of hits that
occurred in the time bin

* Thoughts for later: |.ots of hits/
pulses in the timing dimension! Can we
think of ways to reduce this?
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* We conducted a proof-of-concept study using open-source neutrino telescope
simulation software Prometheus [1]

* It can simulate events for any detector configuration, we specifically used IceCube-
like parameters

 Photon
‘Propagation

[1] J. Lazar et al. arXiv:2304.14526



https://arxiv.org/abs/2304.14526

Train a 4D SSCNN to do energy and angular
reconstruction on Prometheus (IceCube-like) events

Large GPU batching (memory-efficient) allows for
sub-ms per-event average runtime

<100ms per-event
average runtime on
CPU sequentially
(batch size of 1)
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* Improve reconstruction speed

» Efficient ML reconstruction of direction/energy using sparse
submanifold CNNs (SSCNN)

* Representation learning

* Learning effective and compact representations of neutrino
telescope events

* Future plans for application in IceCube (WIP)

* Fast ML at early levels in data pipeline Two major challenges:

Spatial: Neutrino telescope data is
extremely sparse and of large-scale
Temporal: Events can span over
thousands of nano-seconds, but fine
timing resolution is important for certain
analyses




* We can view an event as a set of optical " £ » INTERACTION
modules (OM) that saw light, and the B N N POINT
series of “pulses” associated with that o LT L SR Lt
OM =N - R | e oo

* Computationally intensive to process all i
hits/pulses in a 4D manner (hundredsto = =& | s |
thousands per OM at high energies) Nt - gg
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* Some existing solutions:
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* Summary statistics: g statistical
variables derived from the pulse series
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* Asymmetric Gaussian mixture
model (Event-Generator): fit the
parameters of a mixture of

asymmetric Gaussians using neural ]
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 First pass at a new idea: variational autoencoders

reconstructed
binned pulse series

binned pulse series | | |I o Ml 1< |l II

| | | . | Latent | . | || ]
Input Encoder Space Decoder Output

* VAE learns to encode and decode binned pulse series to a smaller latent space

* Idea is that the latents are a information-rich representation of the pulse series,
which we can use as an data-driven summarization of the timing information
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* Conducted proof-of-concept study with Prometheus events, with “om2vec” VAE

* Important note: Prometheus events use individual photons hits and not pulses
(which would be data from a real experiment), so this is an idealized case study

2000



* Combining SSCNN with the om2vec VAE for
angular reconstruction, we can reduce our
problem from 4D to 3D by reducing the time
dimension:

* SSCNN (Full): is the 4D SSCNN shown
previously

 SSCNN (om2vec): uses latents from VAE,
summarizing the time dimension (3D)

* CNN (om2vec): 2D standard ResNet, also
using latents from VAE and arranged into
2D 1images
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* Improve reconstruction speed

» Efficient ML reconstruction of direction/energy using sparse
submanifold CNNs (SSCNN)

* Representation learning

* Learning effective and compact representations of neutrino
telescope events

* Future plans for application in IceCube (WIP)

* Fast ML at early levels in data pipeline Two major challenges:

Spatial: Neutrino telescope data is
extremely sparse and of large-scale
Temporal: Events can span over
thousands of nano-seconds, but fine
timing resolution is important for certain
analyses




[ceCube has been collecting data for >10 years (>315 million seconds)

Level Data Rate (events/sec)
Trigger ~2700
Muon Filter (Level 1) ~45
Muon Filter (Level 2) ~2
AnaIyS|s-speC|f|C data Varies
reduction cuts
Analysis final levels Varies

2016 JINST 11 P11009

Data rate dominated by air shower
backgrounds (atmospheric p)

Even higher data rates for water-

based/larger neutrino telescopes
T Chiarusi et al 2017 J. Phys.: Conf. Ser. 898 032042

Atm. p : Atm. v, : Astrophysical v, ratio is ~109:103 : 1




[ceCube has been collecting data for >10 years (>315 million seconds)

Level Data Rate (events/sec)
Trigger ~2700
Muon Filter (Level 1) ~45
Muon Filter (Level 2) ~2
AnaIyS|s-speC|f|C data Varies
reduction cuts
Analysis final levels Varies

2016 JINST 11 P11009

Atm. p can be cut out using
directional reconstruction
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Typical Directional Reco

Level Data Rate (events/sec) Method
. Simple line-fitting
Trigger ~2700 algorithms
. Simple maximum
Muon Filter (Level 1) ~45 ikelihood methods
. Complex maximum
Muon Filter (Level 2) "2 ikelihood methods
Analysis-specific data Varies Complex maximum
reduction cuts likelihood methods
Analysis final levels Varies Complex max likelihood/

Machine learning

2016 JINST 11 P11009

Usually, ML is only used
after significant data
reduction steps after Level

2 filters, due to GPU and
runtime constraints

Filters and subsequent
analysis-specific cuts rely
on max-likelihood methods




Typical Directional Reco

Level Data Rate (events/sec) Method
. Simple line-fitting
Trigger ~2700 algorithms
. Simple maximum
Muon Filter (Level 1) ~45 ikelihood methods
. Complex maximum
Muon Filter (Level 2) "2 ikelihood methods
Analysis-specific data Varies Complex maximum
reduction cuts likelihood methods
Analysis final levels Varies Complex max likelihood/

Machine learning

2016 JINST 11 P11009

The goal is to use SSCNN,
VAEs, and other fast ML
techniques to push upwards
in the pipeline

Fast ML




— True Pulse Series
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* SSCNN implemented on IceCube data, working as expected for Level 2 Muon Filter events

* VAEs for learning representations of IceCube pulse series (WIP, difficult vs. Prometheus photon
hits)

* VAE + summary stats encoding

* Normalizing flows?




* Neutrino telescope data is spatially sparse, and many downstream tasks benefit
from fine timing resolution

* These challenges can be addressed with SSCNNs and VAE latent representations for
flexible, efficient and performant reconstructions

* On-going work to incorporate these ML techniques into earlier levels of the
[ceCube data pipeline




Thank you!

felixyu@g.harvard.edu
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