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Towards improving efficiency of machine learning 
techniques in neutrino telescopes

Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles
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Motivation

• Two major challenges: 

• Spatial: Neutrino telescope data is extremely sparse and of large-scale 

• Temporal: Events can span over thousands of nano-seconds, but fine timing 
resolution is important for many analyses 

• Resolving these issues can lead towards development of ML reconstructions that 
are efficient and flexible, without sacrificing too much performance.
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Outline
• Improve reconstruction speed 

• Efficient ML reconstruction of direction/energy using sparse 
submanifold CNNs (SSCNN) 

• Representation learning 

• Learning effective and compact representations of neutrino 
telescope events 

• Future plans for application in IceCube (WIP) 

• Fast ML at early levels in data pipeline
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Convolutional Neural Networks
• Convolutional neural networks (CNNs) are a staple for image-like data 

• Convolutions excel at feature extraction, which is done using kernels, and stacking 
layers to form a network
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CNNs in IceCube
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CNNs have seen action in neutrino 
telescopes like IceCube

Each optical module serves as a “pixel”

Sparsity problem!
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Sparse Submanifold Convolutions

• Sparse submanifold convolutions only 
operate on non-zero input coordinates 

• Very efficient for sparse data 

• Deployable for inference on CPUs!
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F. J. Yu et al., arXiv:2303.08812

L. Domine et al., Phys. Rev. D 102, 012005

https://arxiv.org/abs/2303.08812
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Sparse Submanifold Convolutions
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• Natural way to encode neutrino 
telescope data for SSCNNs is as a 4D 
point cloud 

• Feature is the number of hits that 
occurred in the time bin 

• Thoughts for later: Lots of hits/
pulses in the timing dimension! Can we 
think of ways to reduce this?
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Proof-of-concept study with Prometheus

• We conducted a proof-of-concept study using open-source neutrino telescope 
simulation software Prometheus [1] 

• It can simulate events for any detector configuration, we specifically used IceCube-
like parameters
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[1] J. Lazar et al. arXiv:2304.14526

https://arxiv.org/abs/2304.14526
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Energy & Angular Reconstructions
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Train a 4D SSCNN to do energy and angular 
reconstruction on Prometheus (IceCube-like) events

Large GPU batching (memory-efficient) allows for 
sub-ms per-event average runtime

< 100ms per-event 
average runtime on 
CPU sequentially 
(batch size of 1)

Per-event average runtime
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Learning Representations of Events

• We can view an event as a set of optical 
modules (OM) that saw light, and the 
series of “pulses” associated with that 
OM 

• Computationally intensive to process all 
hits/pulses in a 4D manner (hundreds to 
thousands per OM at high energies) 

• Idea: compress/summarize each OMs 
timing information into a fixed-size 
parameterization (reducing the problem 
from 4D -> 3D)
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J. Pairin
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Learning Representations of Events

• Some existing solutions: 

• Summary statistics: 9 statistical 
variables derived from the pulse series 

• Asymmetric Gaussian mixture 
model (Event-Generator): fit the 
parameters of a mixture of 
asymmetric Gaussians using neural 
networks
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JINST 16 (2021) P07041

PoS-ICRC2021-1065
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First pass: vanilla variational autoencoder
• First pass at a new idea: variational autoencoders
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binned pulse series reconstructed 
binned pulse series

• VAE learns to encode and decode binned pulse series to a smaller latent space 

• Idea is that the latents are a information-rich representation of the pulse series, 
which we can use as an data-driven summarization of the timing information
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Proof-of-concept study with Prometheus
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• Conducted proof-of-concept study with Prometheus events, with “om2vec” VAE 

• Important note: Prometheus events use individual photons hits and not pulses 
(which would be data from a real experiment), so this is an idealized case study

*AGMM fit using scipy.minimize, not neural net
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Combining SSCNN and VAEs
• Combining SSCNN with the om2vec VAE for 

angular reconstruction, we can reduce our 
problem from 4D to 3D by reducing the time 
dimension: 

• SSCNN (Full): is the 4D SSCNN shown 
previously 

• SSCNN (om2vec): uses latents from VAE, 
summarizing the time dimension (3D) 

• CNN (om2vec): 2D standard ResNet, also 
using latents from VAE and arranged into 
2D images
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SSCNN (om2vec) is ~4x faster 
than SSCNN (Full) on GPU
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IceCube Data Pipeline
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Level Data Rate (events/sec)

Trigger ~2700

Muon Filter (Level 1) ~45

Muon Filter (Level 2) ~2

Analysis-specific data 
reduction cuts Varies

Analysis final levels Varies

IceCube has been collecting data for >10 years (>315 million seconds)

Data rate dominated by air shower 
backgrounds (atmospheric µ) 

Atm. µ : Atm. νµ : Astrophysical νµ ratio is ~ 109 : 103 : 1

Even higher data rates for water-
based/larger neutrino telescopes

2016 JINST 11 P11009

T Chiarusi et al 2017 J. Phys.: Conf. Ser. 898 032042
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IceCube Data Pipeline
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IceCube has been collecting data for >10 years (>315 million seconds)

Atm. µ can be cut out using 
directional reconstructionLevel Data Rate (events/sec)

Trigger ~2700

Muon Filter (Level 1) ~45

Muon Filter (Level 2) ~2

Analysis-specific data 
reduction cuts Varies

Analysis final levels Varies

2016 JINST 11 P11009
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IceCube Data Pipeline
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Level Data Rate (events/sec) Typical Directional Reco 
Method

Trigger ~2700 Simple line-fitting 
algorithms

Muon Filter (Level 1) ~45 Simple maximum 
likelihood methods

Muon Filter (Level 2) ~2 Complex maximum 
likelihood methods

Analysis-specific data 
reduction cuts Varies Complex maximum 

likelihood methods

Analysis final levels Varies Complex max likelihood/
Machine learning

Usually, ML is only used 
after significant data 
reduction steps after Level 
2 filters, due to GPU and 
runtime constraints

Filters and subsequent 
analysis-specific cuts rely 
on max-likelihood methods

2016 JINST 11 P11009
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IceCube Data Pipeline
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The goal is to use SSCNN, 
VAEs, and other fast ML 
techniques to push upwards 
in the pipeline

Fast ML

Level Data Rate (events/sec) Typical Directional Reco 
Method

Trigger ~2700 Simple line-fitting 
algorithms

Muon Filter (Level 1) ~45 Simple maximum 
likelihood methods

Muon Filter (Level 2) ~2 Complex maximum 
likelihood methods

Analysis-specific data 
reduction cuts Varies Complex maximum 

likelihood methods

Analysis final levels Varies Complex max likelihood/
Machine learning

2016 JINST 11 P11009
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Current and Future Works

• SSCNN implemented on IceCube data, working as expected for Level 2 Muon Filter events 

• VAEs for learning representations of IceCube pulse series (WIP, difficult vs. Prometheus photon 
hits) 

• VAE + summary stats encoding 

• Normalizing flows?
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True Pulse Series
Summary-stat VAE Reco
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Conclusions

• Neutrino telescope data is spatially sparse, and many downstream tasks benefit 
from fine timing resolution 

• These challenges can be addressed with SSCNNs and VAE latent representations for 
flexible, efficient and performant reconstructions 

• On-going work to incorporate these ML techniques into earlier levels of the 
IceCube data pipeline
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Thank you!
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