

Application of graph networks to a next generation wide-field gamma-ray observatory in the southern sky

Franziska Leitl

Jonas Glombitza, Martin Schneider, Stefan Funk and Christopher van Eldik Erlangen Centre for Astroparticle Physics (ECAP) 30.01.25 Friedrich-Alexander-Universität Erlangen-Nürnberg

Application of Graph Networks to a wide-field Water-Cherenkov-based Gamma-Ray Observatory

J. Glombitza,^{*a*} M. Schneider,^{*a*} F. Leitl,^{*a*} S. Funk,^{*a*} and C. van Eldik^{*a*}

^aFriedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Nikolaus-Fiebiger-Str. 2, 91058 Erlangen, Germany

E-mail: jonas.glombitza@fau.de, martin.friedrich.schneider@fau.de, franziska.leitl@fau.de

https://doi.org/10.48550/arXiv.2411.16565

The Southern Wide-field Gamma-Ray Observatory (SWGO)

The Southern Wide-field Gamma-Ray Observatory (SWGO)

- Future gamma-ray detector located in Atacama Astronomical Park, Chile.
- Ground-level detector array primarily based on water-Cherenkov detector units
- Altitude: 4770m
- Energy range from hundreds of GeV up to the PeV scale
- Close to 100% duty cycle and order steradian field of view.

The Southern Wide-field Gamma-Ray Observatory (SWGO)

SWGO still in the R&D phase

 \rightarrow Testing different detector and array designs

One of the possible candidate designs:

- Roughly 280,000m² (~ 4600 units)
- Two zones: Fill factor 80% and 5%
- Similar style to HAWC tanks

The Southern Wide-field Gamma-Ray Observatory (SWGO)

franziska.leitl@fau.de ECAP Application of graph networks to a next generation wide-field gamma-ray observatory in the southern sky

Why Graph Neural Networks?

Example shower footprint

Measured shower profile on the ground depends on:

- Energy of shower
- Incoming zenith angle
- Position
- → Can trigger between tens and thousands of tanks

Fully connected network

Convolutional Neural Networks (CNNs)

\rightarrow Problematic for large datasets

\rightarrow Bound to regular grid structure

<u>CNNs</u>

 \rightarrow GNNs can be applied to non-regular grids

<u>GNNs</u>

Erdmann et al. (2021)

EdgeConvolutions

franziska.leitl@fau.de ECAP Application of graph networks to a next generation wide-field gamma-ray observatory in the southern sky

Graph Neural Networks (GNNs)

DynamicEdgeConvolutions

- Update neighbours in feature space for each layer
- Nodes with similar features become neighbours
- \rightarrow Extract global features

Friedrich-Alexander-Universität Erlangen-Nürnberg

GNNs for SWGO

Application of GNNs to SWGO

- Nodes as triggered tanks
 → Different for each event
- 4 inputs per tank:
 - *x* and *y* position of each triggered tank
 - Arrival times of first Cherenkov photon measured in PMT
 - Charge measured in each tank
- *k*NN clustering:
 6 neighbours and self loop

Network structure

- NVIDIA A40/A100 GPUs
- Implementation using PyTorch_Geometric
- ~ 500k trainable parameters

 \rightarrow Performed a small hyperparameter search for the γ / hadron separation and energy reconstruction

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

Network structure

Hyperparameter search (70 trainings each): Learning rate $n_{
m feat}$ -Decay factor n_{ResNet} -**Batchsize** Batchnorm -Weight decay Dropout n_{EdgeConv} *n_{k*NN,DynEdgeConv} **n**_{DynEdgeConv} Trainings running up to 24h

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

Hyperparameter search

Validation losses

franziska.leitl@fau.de ECAP Application of graph networks to a next generation wide-field gamma-ray observatory in the southern sky

γ / hadron separation

Training output:

particle type

Performance for different input features

- Background contamination: Fraction of protons relative to the simulated number of protons misclassified as gamma rays

→ Position, time & charge information yields the best results

Score that indicates likelihood of

franziska.leitl@fau.de ECAP Application of graph networks to a next generation wide-field gamma-ray observatory in the southern sky

γ / hadron separation

Performance estimation

- LIC and PINCness as standard parameters originating from HAWC
- Background rejection of GNN surpasses standard methods in all energy ranges

→ Improvement by a factor of two at low energies and one order of magnitude at high energies

Energy reconstruction

Dispersion matrix

- **Training output**: $\log_{10}(E_{reco}/GeV)$
- Ideal curve: $\log_{10}(E_{true}/GeV) = \log_{10}(E_{reco}/GeV)$

→ Good agreement between reconstructed and true energy in dispersion matrix

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

Energy reconstruction

Performance estimation

- Energy resolution as RMS of $\log_{10}(E_{reco}/E_{true})$

- Compare both to the current
 template-based standard method
- → GNN outperforming current standard method over the whole energy range

Successfully applied Graph Neural Networks (GNNs) to an SWGO candidate configuration:

- γ / hadron separation
- Energy reconstruction
- → Great improvements compared to current standard methods over the whole energy range
- → Further Details in our paper: <u>Glombitza, Schneider, Leitl, Funk, van Eldik</u> (2024)

What we are working on now:

- Applied GNNs to other candidate configurations \rightarrow Networks robust when changing configurations
- GNNs for direction reconstruction, Vision Transformers, ...

10

₩10⁻²

월 10-3

 10^{-}

 ε_{ν} fixed at 80°

▼ GNN
 ▲ LIC&PINCness
 ▲ LIC

* PINCness

10

 10^{4}

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

E_{reco}/GeV

 10^{5}

 10^{3}

 10^{4}

E_{true}/GeV

0.00

 10^{2}

Thank you for your attention!

Backup

	Layer	features	setting	input shape	output shape	
2 ~ [EdgeConv	n_{feat}	\Box_j : mean	$n_{\rm nodes} \times 4$	$n_{ m nodes} imes n_{ m feat}$	
	ReLU	-		$n_{\rm nodes} \times n_{\rm feat}$	$n_{ m nodes} imes n_{ m feat}$	
	EdgeConv	n_{feat}	\Box_j : mean	$n_{ m nodes} imes n_{ m feat}$	$n_{ m nodes} imes n_{ m feat}$	
3 ~ {	ReLU	-	-	$n_{ m nodes} imes n_{ m feat}$	$n_{ m nodes} imes n_{ m feat}$	
	DynEdgeConv	n_{feat}	\Box_j : mean	$n_{ m nodes} imes n_{ m feat}$	$n_{ m nodes} imes n_{ m feat}$	
	Concat		layer outputs	$4 \cdot (n_{\text{nodes}} \times n_{\text{feat}})$	$4 \cdot (n_{ m nodes} imes n_{ m feat})$	
	MaxPooling	_		$4 \cdot (n_{\mathrm{nodes}} \times n_{\mathrm{feat}})$	$4 \cdot (n_{\mathrm{nodes}} \times n_{\mathrm{feat}})$	
4 × {	Dropout	—	p = 0.13	$4 \cdot (n_{\text{nodes}} \times n_{\text{feat}})$	$4 \cdot (n_{\mathrm{nodes}} \times n_{\mathrm{feat}})$	
	ResNet	n_{feat}		$4 \cdot (n_{\text{nodes}} \times n_{\text{feat}})$	n_{feat}	
	ResNet	n_{feat}	6	n_{feat}	$n_{ m feat}$	
	Dropout	-	p = 0.13	$n_{ m feat}$	$n_{ m feat}$	
	Linear	2	·····	$n_{ m feat}$	2	
	SoftMax	_	_	$n_{ m feat}$	2	

Architecture for γ / hadron separation

Table 1: Network architectures for the separation task. n_{nodes} describes the number of nodes in the input graph, which depend on the number of triggered tanks, and n_{feat} the number of features. We further use a bottleneck layer in the first ResNet layer to adjust the dimensionality.

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

Backup

	Layer	features	setting	input shape	output shape
	EdgeConv	n_{feat}	\Box_j : mean	$n_{\rm nodes} \times 4$	$n_{\rm nodes} \times n_{\rm feat}$
	Linear	$n_{ m feat}$	-	$n_{ m nodes} imes 4$	$n_{\rm nodes} \times n_{\rm feat}$
	Addition	-	8	$n_{ m nodes} imes 4$	$n_{\rm nodes} \times n_{\rm feat}$
	ReLU	_		$n_{ m nodes} imes n_{ m feat}$	$n_{\rm nodes} \times n_{\rm feat}$
(EdgeConv	n_{feat}	\Box_j : mean	$n_{ m nodes} imes n_{ m feat}$	$n_{\rm nodes} \times n_{\rm feat}$
2	Linear	n_{feat}	—	$n_{ m nodes} imes n_{ m feat}$	$n_{\rm nodes} \times n_{\rm feat}$
3×1	Addition	-	-	$n_{ m nodes} imes n_{ m feat}$	$n_{\rm nodes} \times n_{\rm feat}$
l	ReLU	—	—	$n_{\rm nodes} \times n_{\rm feat}$	$n_{\rm nodes} \times n_{\rm feat}$
	DynEdgeConv	n_{feat}	\Box_j : mean	$n_{ m nodes} imes n_{ m feat}$	$n_{ m nodes} imes n_{ m feat} \cdot 2$
	Linear	n_{feat}	<u></u>	$n_{ m nodes} imes n_{ m feat}$	$n_{ m nodes} imes n_{ m feat} \cdot 2$
	Addition			$n_{ m nodes} imes n_{ m feat}$	$n_{\rm nodes} \times n_{\rm feat} \cdot 2$
	ReLU	-	·	$n_{ m nodes} imes n_{ m feat} \cdot 2$	$n_{ m nodes} imes n_{ m feat} \cdot 2$
	Concat	—	layer outputs	$5 \cdot (n_{ m nodes} imes n_{ m feat})$	$5 \cdot (n_{ m nodes} imes n_{ m feat})$
	MaxPooling	—	-	$5 \cdot (n_{ m nodes} imes n_{ m feat})$	$5 \cdot (n_{ m nodes} imes n_{ m feat})$
	Batchnorm	-	momentum = 0.1	$5 \cdot (n_{ m nodes} imes n_{ m feat})$	$5 \cdot (n_{ m nodes} imes n_{ m feat})$
	Dropout	_	p = 0.24	$5 \cdot (n_{ m nodes} imes n_{ m feat})$	$5 \cdot (n_{ m nodes} imes n_{ m feat})$
	ResNet	n_{feat}	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	$5 \cdot (n_{ m nodes} imes n_{ m feat})$	n_{feat}
$2 \times \{$	ResNet	n_{feat}		n_{feat}	n_{feat}
	Dropout	-	p=0.24	$n_{ m feat}$	$n_{ m feat}$
	Linear	1		$n_{ m feat}$	1

Architecture for energy reconstruction

Table 2: Network architectures for the energy reconstruction task. n_{nodes} describes the number of nodes in the input graph, which depend on the number of triggered tanks, and n_{feat} the number of features. The "Addition" denotes a residual connection that connects consecutive convolutional and linear layers. We further use a bottleneck layer in the first ResNet layer to adjust the dimensionality.

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

Backup

layer	features	settings
Linear	n_{feat}	no bias
Batchnorm		momentum = 0.9
Activation		_
Linear	n_{feat}	no bias
Batchnorm	-	momentum=0.9
Activation	3	5 7-1 5
Linear	n_{feat}	no bias
Batchnorm		momentum=0.9
Activation		······································

Kernel network ho

(a) Architecture of the kernel function h_{Θ} , where n_{feat} is to be chosen by the user. For the γ /hadron separation, we used SiLU as an activation function and for the energy reconstruction ReLU.

Residual Module "ResNet"				
layer	features	settings		
Linear	n_{feat}	no bias		
SiLU	2 <u>—</u> 2	4 <u></u>		
Batchnorm		momentum=0.1		
Linear	n_{feat}	no bias		
SiLU	1. 	_		
Batchnorm	-	momentum=0.1		
Add	-			
SiLU				

(b) Details of our used ResNet modules.

γ / hadron separation Current standard method: LIC and PINCness

Compare performance of GNN wit parameters originating from HAWC:

$$\text{LIC} = \log_{10} \left(\frac{CxPE_{40}}{n_{\text{hit}}} \right)$$

with $CxPE_{_{40}}$ as largest charge measured in PMT at least 40m from shower core and $n_{_{hit}}$ number or tanks hit in event

and PINCness =
$$\frac{1}{N} \sum_{i=0}^{N} \frac{(\log_{10}(q_i) - \langle \log_{10}(q_i) \rangle)^2}{\sigma^2}$$

with σ as charge uncertainty and q_i as the charge of the *i*-th PMT triggered in an event.

Energy reconstruction

Current standard method: Template-based reconstruction

Xmax: 400 to 450 g/cm²; Energy: 10.0 - 11.2 TeV; Zenith angle: 0 to 19 deg Templates: log₁₀(P) 6 $\log_{10}(n_{\rm PE})$ MC simulations of gamma-induced EAS binned in X_{max} , *E* and θ Save the information if a tank did not measure any charge $\log_{10}(P_0)$ -6 Minimise log-likelihood to get best fit -8 parameters -2 -10 $\log L = -2 \sum_{i} \log(F(\log_{10}(N_{\rm PE})_i, r_i, X_{\rm max}, E|\theta, \phi))$ -3 -12 200 400 600 800 1000 1200 1400 1600 $\log_{10}(P_0)$ r [m]

Energy reconstruction

Performance estimation

П

-

0

Estimate performance via

0.8

0.6

0.4

0.2

 $\log_{10}(E_{\rm reco}/E_{\rm true})$

- Energy bias as mean of $\log_{10}(E_{\text{reco}}/E_{\text{true}})$

÷

1

- Energy resolution as RMS of $\log_{10}(E_{reco}/E_{true})$

and compare both to the current template-based standard method

 \oint GNN: $\theta \leq 30^{\circ}$

 $\overline{\diamond}$ GNN: 30° < $\theta \le 45^\circ$

Template: $\theta \leq 30^{\circ}$

 $\overline{\Box}$ Template: 30° < $\theta \le 45^{\circ}$

 \rightarrow GNN outperforming current standard method over the whole energy range

Glombitza, Schneider, Leitl, Funk, van Eldik (2024)

