
IceProd Tutorial 2024

IceProd/SimProd Workshop
Summer 2024



Overview
- What is IceProd? Why use it?

- Writing a configuration file

- Dataset lifecycle

- Troubleshooting

- Advanced Topics

2

Down the rabbit hole?



Data provenance
╶ Configuration for how a file was generated or processed
╶ Which software, what versions, when/where it ran, … 

Dataset submission
╶ Monitor job status, resource usage
╶ Auto-retry failed jobs for non-physics errors

Use cases:
╶ Simulation production
╶ Experimental data processing

What is IceProd?

3

╶ Common analysis processing
╶ Other large-scale workloads



Why not DagMan, Snakemake, etc

They are great tools for running a set of jobs once, but bad for keeping 
history of what exactly was run

╶ This is not just a nice thing - we regularly get questions about how a 
dataset was configured, sometimes years later

If your jobs have variable resource requirements, or requirements not 
known at submit time, these tools won’t work very well

- IceProd can resubmit jobs with higher resource requirements if they 
fail and HTCondor identifies resource usage as the issue

4



IceProd Scalability and Resources

IceProd is all about scale. It is 
specifically designed to handle 
millions of jobs

Regular resource pool:
- 20k CPUs, 700 GPUs

Peak resources tested:
- 100k CPUs, 50k GPUs

5

Minutes

Pre-exascale compute in the cloud



The IceProd Website

Go to https://iceprod2.icecube.wisc.edu 

- Log in via IceCube SSO

- Search for a Dataset

- View Dataset details and configuration

- View Job and Task status, logs, and statistics 

- Submit new Datasets

6

https://iceprod2.icecube.wisc.edu


Writing a Configuration File

7



IceProd Terms

8

Dataset – a collection of Jobs with a single 
configuration. They are commonly referred 
to by number, such as 22634

Job – One of many parallel instances running 
the configuration, with a job “index” starting 
at 0 and counting to the number of jobs 
submitted - 1

Task – Translates to an HTCondor job. Contains 
multiple Trays, resource requirements, 
dependencies, and file input / output

Dataset
├ Job
├─ Task
├─ Task
├ Job
├─ Task
├─ Task
├ Job
├─ Task
├─ Task
├ Job
├─ Task
├─ Task



IceProd Terms

9

Tray – Like in IceTray, a grouping of Modules 
inside a Task. Usually just one is used

Iteration – Repeat a Tray multiple times if 
desired. Works well varying a single 
parameter

Module – Runs a single script with arguments 
in a specific environment. Designed for 
Python scripts, but can run bash or 
compiled programs

Task
- Dependencies
- Requirements
- Files

├ Tray
├─ Module
├─ Module
├ Tray
├─ Module



IceProd Configuration File - Json

10

Json config

Dataset description

Popular 
Macros

# Jobs Prio Group



IceProd Configuration File - Json
{
  "steering": {
    "parameters": {

"subdirectory": "$sprintf('%07d-%07d',$eval($(job)//1000*1000),$eval($(job)//1000*1000+999))",
"TARGET": "gsiftp://gridftp.icecube.wisc.edu/data/sim/IceCube/2023/filtered/level2/

neutrino-generator/$(dataset)/$steering(subdirectory)",
  "outfile": "NuGen_$(job).i3.zst",

"env_path": "/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/icetray-env icetray/v1.9.2"
    }
  },

11

Here we define a few global parameters

- Note the use of macros like $(dataset) and $(job), as well as 
functions like $sprintf and $eval



IceProd Configuration File - Json
  "tasks": [ {
    "name": "generation",
    "requirements": {"memory": 2, "time": 1.5},
    "data": [ {
  "type": "permanent",
  "movement": "output",
  "remote": "$steering(TARGET)/$steering(outfile)"
    } ],
    "trays": [ {
  "iterations": 1,
  "modules": [ {
      "name": "NuGen",
      "src": "/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/metaprojects/icetray/v1.9.2/
simprod-scripts/resources/scripts/nugen.py",
      "args": {
          "FromEnergy": 10000,
          "ToEnergy": 1000000,
          "nevents": 10000,
          "outputfile": "$steering(outfile)"
      },
      "env_shell": "$steering(env_path)"
  } ]
    } ]
  } ]
}

12

Transfer output to Madison

Run NuGen
/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/icetray-env 
icetray/v1.9.2 python 
/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/metaproject
s/icetray/v1.9.2/simprod-scripts/resources/scripts/nugen.py 
--FromEnergy 10000 --ToEnergy 1000000 --nevents 10000 
--outputfile NuGen_0.i3.zst

Define resource requirements

Iterations - can use $(iter) inside here



Task Requirements

Resource requirements:

- cpu: integer, >= 1, default=1
- gpu: integer, >= 0, default=0
- memory: float, > 0, default=1, unit=GB
- disk: float, > 0, default=1, unit=GB
- time: float, > 0, default=1, unit=hour

Other requirements:

- os: list, default=[], uses CVMFS OS string (RHEL_7_x86_64)
- site: string, default=None, used to select IceProd site to run on

13



Task Dependencies

Like with Dagman, tasks can depend on other tasks within the same job

Tasks can also depend on tasks from other datasets, using a dataset id 
and colon before the task name. This is a 1:1 match between job indexes

14

  "tasks": [ {
    "name": "propagation",
    "depends": 
["632bbe3ecb8611eea1dd00505684797b:generation"],
  } ]

  "tasks": [ {
    "name": "generation",
    …
  }, {
    "name": "propagation",
    "depends": ["generation"],
    …
  } ]



Data Transfer

Data transfer can be defined at the Task level

- type: permanent or job_temp
- movement: input, output, or both
- transfer: true or false
- remote: url path
- local: file name

When the type is permanent and local is not defined, it is assumed to be 
the basename of the remote path

15

  "tasks": [ {
    "name": "generation",    
    "data": [ {
  "type": "permanent",
  "movement": "output",
  "remote": 
"$steering(TARGET)/$steering(outfile)"
    } ],
    …
  } ]



Data Transfer

When the type is job_temp and remote is not defined, it will be stored in the 
global IceProd scratch storage and deleted when a job completes

job_temp is primarily used to
transfer temporary files 
between tasks, such as 
between cpu and gpu tasks

16

  "tasks": [ {
    "name": "generation",    
    "data": [ {
  "type": "job_temp",
  "movement": "output",
  "local": "$steering(corsika_file)"
    } ],
    …
  }, {
    "name": "propagation",    
    "data": [ {
  "type": "job_temp",
  "movement": "input",
  "local": "$steering(corsika_file)"
    } ],
    …
  } ]



Modules

First, define the environment to run in with env_shell
This is typically a CVMFS environment + metaproject

/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/icetray-env <metaproject-dir>

Then define the src

- src can be any of:
- python script

- bash script

- linux executable file

17

{      
  "name": "NuGen",
  "env_shell": 
"/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/icetray-env 
icetray/v1.9.2"
  "src": 
"/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/metaproject
s/icetray/v1.9.2/simprod-scripts/resources/scripts/nugen.p
y",
  "args": {
    "FromEnergy": 10000,
    "ToEnergy": 1000000,
    "nevents": 10000,
    "outputfile": "$steering(outfile)"
  },
}



Module Arguments

Args can be either a dict, list, or string. These are all the same:

You can even define the parsed structure directly:

18

"args": "--FromEnergy=10000 --ToEnergy=1000000 --nevents=10000 --outputfile=$steering(outfile)"

"args": {
  "FromEnergy": 10000,
  "ToEnergy": 1000000,
  "nevents": 10000,
  "outputfile": "$steering(outfile)"
}

"args": [
  "--FromEnergy=10000",
  "--ToEnergy=1000000",
  "--nevents=10000",
  "--outputfile=$steering(outfile)"
}

"args": {
  "args": ["$steering(outfile)"],
  "kwargs": {
    "FromEnergy": 10000,
    "ToEnergy": 1000000,
    "nevents": 10000,
  }
}

$steering(outfile) --FromEnergy=10000 
--ToEnergy=1000000 --nevents=10000 



Dataset Lifecycle

19

(for IceProd 3.x)



Dataset Status

- processing: the starting status

- suspended: the dataset is manually suspended

- errors: the dataset has jobs in an error state

- complete: all jobs are complete

A dataset can be reset back to processing:

- A regular reset will reset any non-complete jobs and tasks

- A “hard reset” will reset all jobs and tasks

20



Job Status

- processing: the starting status

- suspended: the job is manually suspended, or a task has been 
suspended and no tasks are running

- errors: the job has at least one task that has failed

- complete: all tasks are complete

A job can be reset back to processing:

- A regular reset will reset any non-complete tasks

- A “hard reset” will reset all tasks

21



Task Status

- idle: the starting status, task is waiting on a dependency or priority

- waiting: the task is ready to queue

- queued: the task is queued to HTCondor

- processing: the task is running in HTCondor

- suspended: the task is manually suspended

- failed: the task has a physics error, or 11 non-physics errors

- complete: the task was successful

22



Task Status

23



A note on “physics” errors

A non-physics error is defined as a random or transient error, where it is 
expected that retrying will fix the problem

Some examples of recoverable errors:
- CVMFS errors
- Illegal instruction
- No disk space remaining
- Ran out of memory

All other errors are assumed to be “physics” errors

Note: IceProd used to retry on all errors, but this can bias clsim in icetray 
version 1.7.2 or greater, so this newer policy was instituted 24



Troubleshooting

25



Initial Steps

1. Look at task logs for any obvious problems

stdlog is from iceprod itself, stdout and stderr are your script

2. If you’re not sure, reset it to see if it is a transient error

3. Are all the tasks failing? It might be a configuration error

26



Common Errors

RuntimeError: OpenCL error: could build the OpenCL program!

Something is wrong with OpenCL on this node

RuntimeError: Internal error: unknown particle id from OpenCL

This is a bug in CLSim

env-shell.sh: line 189: 8208 Segmentation fault

There’s a problem in the C++ code that needs to be fixed

27



Getting Help

unknown failure

The automated error collection failed, but something went wrong

If you can’t find a suspicious error in the rest of your dataset and only get 
this, it’s time to ask for help

The best way is to post a message on Slack in the #iceprod channel

- Add details like the dataset and task (links are good), and what you 
know so far

28



Advanced Topics

29



Using the REST API

If you want to aggregate information from a dataset (or multiple datasets), 
you will need to use the REST API
https://docs.icecube.aq/WIPACrepo/iceprod/master/guide/restapi.html  

1. Make a virtualenv and pip install wipac-rest-tools
2. Write a script like:

from rest_tools.client import SavedDeviceGrantAuth
api = SavedDeviceGrantAuth(
    address='https://iceprod2-api.icecube.wisc.edu',
    token_url='https://keycloak.icecube.wisc.edu/auth/realms/IceCube',
    filename='.iceprod-auth',
    client_id='iceprod-public'
)
# get a list of datasets
result = api.request_seq('GET', '/datasets', {'keys': 'dataset|jobs_submitted'})
for dataset_id, metadata in result.items():
    # do something with the dataset 30

https://docs.icecube.aq/WIPACrepo/iceprod/master/guide/restapi.html


Using the REST API - Example
#!/cvmfs/icecube.opensciencegrid.org/iceprod/v2.7.1/env-shell.sh python
from rest_tools.client import SavedDeviceGrantAuth
api = SavedDeviceGrantAuth(
    address='https://iceprod2-api.icecube.wisc.edu',
    token_url='https://keycloak.icecube.wisc.edu/auth/realms/IceCube',
    filename='.iceprod-auth',
    client_id='iceprod-public'
)

# get a list of datasets
result = api.request_seq('GET', '/datasets', {'keys': 'dataset|jobs_submitted'})
for dataset_id, metadata in result.items():
    print(metadata)

# for the last dataset, get a list of tasks
result = api.request_seq('GET', f'/datasets/{dataset_id}/tasks', {'keys': 'job_index|name|status'})
log_task_id = None
for task_id, metadata in result.items():
    print(metadata)
    if metadata['status'] == 'complete':
        log_task_id = task_id

# for the last completed task, get the last logs
result = api.request_seq('GET', f'/datasets/{dataset_id}/tasks/{log_task_id}/logs', {'group': True})
for log in result['logs']:

if log['name'] == 'stdout':
    print(log['data'])

31



Processing Non-Sequential Files

Simulation files are easy to process, a set of files with sequential numbers

Data files or higher levels that add multiple datasets together present a 
problem: how to map the files to the jobs?

IceProd has a way to dynamically assign files to tasks, but we’ll need to 
use the API for this

32



Processing Non-Sequential Files

1. Load an IceProd environment somehow

There are pre-existing installs in CVMFS:
/cvmfs/icecube.opensciencegrid.org/iceprod/v2.7.1/env-shell.sh

Or, pip install iceprod

2. Use the 
https://github.com/WIPACrepo/iceprod/blob/master/bin/basic_submit.py 
script with a list of input and output files

This will create a dataset, jobs, and tasks, then map files onto tasks

33

https://github.com/WIPACrepo/iceprod/blob/master/bin/basic_submit.py


Processing Non-Sequential Files

Script details:

Files are expected to be either full URLs or paths on the UW-Madison 
IceCube file system.

Script arguments will be passed as a string. They can use these built-in 
macros:

- $(input) = The input file list, space-separated
- $(output) = The output file
- $(dataset) = The dataset_id in numerical form
- $(job) = The job index within the dataset.

34



Processing Non-Sequential Files

An example submission:

./basic_submit.py --env_shell 
'/cvmfs/icecube.opensciencegrid.org/py3-v4.3.0/icetray-env icetray/1.8.2' 
my_script.py '--foo=bar $(input) $(output)' job_files.txt

This will execute my_script.py from the local directory, while in the icetray 
environment.  If the first line of job_files.txt contains:

/data/user/XXX/gcdfile.i3.gz /data/user/XXX/infile_01.i3.gz /data/user/XXX/outfile_01.i3.gz

Then the first job will look like:

my_script.py --foo=bar gcdfile.i3.gz infile_01.i3.gz outfile_01.i3.gz

35



Done! You’re all experts now 😏

36


