Overview of the IceCube Supernova Working Group

IceCube Summer School Madison, WI, June 3-7, 2024

> Segev BenZvi University of Rochester

Introduction to the Working Group

High-uptime monitoring for CCSNe near the Milky Way; multi-messenger alerts; searches for GeV neutrinos from solar, galactic, and extragalactic transients.

Telecons: **Mondays at 9 am CT**. <u>#sn-wg</u> on slack + <u>Supernova Wiki Page</u> + SN WG email list (<u>sn-wg@icecube.wisc.edu</u>).

The Life Cycle of a Massive Star

MeV Neutrino Emission in a Supernova

M V - Sphere M V - Sphere M Extended Manlie W Proto-neutron Star M

IceCube Summer School: June 2024

CCSN MeV v Signal in IceCube

CCSN *v* Interactions in the IceCube Detector

Simulated CCSN *v* interaction vertices producing PEs detected by IceCube DOMs. Primary interaction is IBD.

NEUTRON STAR

CCSN v Hits in IceCube Post-Bounce

BLACK HOLE

SuperNova Early Warning System

Progenitor localization with

SNEWS 2.0 is possible by combining signals from many neutrino detectors.

Produce credible regions on the sky where telescopes should point.

Right: SNEWS 2.0 firedrill alert localization without and with IceCube.

Helpful baseline for triangulation!

Credit: M. Colomer+, SNEWS 2.0 Collaboration

SNEWS 2022-10-20T13:56:30.906208

ELOWEN: Transient Searches at GeV

Transient science below 5 GeV: cosmic ray production in solar flares, neutrino+GW searches, neutrino production in GRBs and other transients.

The catch: **backgrounds**. Test: which of these includes an 3 GeV v_{ρ} interaction?

IceCube Summer School: June 2024

Constraining Neutrinos from Solar Flares

IceCube Summer School: June 2024

Constraining GeV Neutrinos from Compact Binary Mergers

Credit: Yi+ MNRAS 476 (2018); Abbasi+ 2021

Constraining GeV Neutrinos from GRBs

Improved Separation of GeV Neutrinos from Backgrounds

Credit: K. Kruiswijk

IceCube Summer School: June 2024

30

-30

0°

CI IBF

Summary of Supernova WG Activities

Searches for **MeV neutrinos** from supernovae & other transients:

- Sensitivity to astrophysics and fundamental neutrino physics.
- Multi-messenger warnings as part of the SNEWS network.
- Lots of modeling tools (<u>SNEWPY</u>, <u>ASTERIA</u>, <u>SNOwGLoBES</u>, <u>sntools</u>, ...)

Constraining **GeV neutrino emission** from energetic transients:

- Sensitivity to a huge range of astrophysical neutrino production mechanisms.
- Background reduction challenge: interesting task in computer vision!

Significant overlap with Neutrino Sources & BSM Working Groups.

Supernova Neutrinos in IceCube

Cas A SNR. Credit: NASA/JPL-Caltech/O. Krause

Core-collapse neutrinos (MeV):

- 10 s burst, $\sim 10^{53}$ erg in neutrinos.
- GC: 10⁵ to 10⁶ events in IceCube, no MeV event reconstruction.

Post-explosion neutrinos (TeV) produced in shock acceleration:

- >1000 v weeks to months after collapse; v_{μ} localization to <1°.
- Not covered here, but see e.g.
 <u>Murase+ 2011</u>, <u>Aartsen+ 2015</u>, <u>Necker</u>
 <u>2021</u>, <u>Kheirandish + Murase 2022</u>, <u>Valtonen-Mattila + O'Sullivan 2023</u>.

IceCube and other CCSN v Detectors

Detector	Туре	Mass (kt)	Location	Events [10 kpc]
IceCube	Long string	600/DOM*	South Pole	500,000*
Hyper-K	water	374	Japan	75,000
KM3Net	Long string	111	France/Italy	10,000*
DUNE	LAr	40	USA	3,000
Super-K	water	32	Japan	7,000
JUNO	scintillator	20	China	6,000
NOvA	scintillator	15	USA	4,000
LVD	scintillator	1	Italy	300
KamLAND	scintillator	1	Japan	300
SNO+	scintillator	0.8	Canada	300
Baksan	scintillator	0.33	Russia	50
Borexino	scintillator	0.3	Italy	100
MicroBooNE	LAr	0.17	USA	17
HALO	Pb	0.08	Canada	30

IceCube Sensitivity: Model Dependence

MeV v Detection System in IceCube: Supernova DAQ + HitSpool

Independent DOM triggers at 0.25 PE \rightarrow discriminator crossings ("hits") in 2¹⁶ clock cycles @ 40 MHz \rightarrow counts in 1.6384 ms \rightarrow counts in **2 ms** bins.

Non-paralyzing artificial deadtime applied: results in ~300 Hz background per DOM.

Online alerts: rebinned counts in sliding windows (0.5 s, 1.5 s, 4.0 s, 10.0 s) with ±5 min sidebands to compute background count.

Offline alerts: HitSpool requests give access to full DOM waveforms 24 to 48 hr after alert, including readout sidebands. **25 ns** resolution.

Credit: D. Heereman (Ph.D., 2015)

Maximum Likelihood of Correlated Rise in $\sum_{i=1}^{N_{ ext{DOM}}} \left(-rac{[r_i^{ ext{constrained}^{ ext{in}}}(\langle r_i angle + \epsilon_i^{ ext{inderset}^{ ext{inderset}^{ ext{op}}}(\sigma_i))]]}}{2\langle \sigma_i angle^2} + rac{1}{2} \ln 2\pi \langle \sigma_i angle^2 ight)$ **DOM Counts** $\ln \mathcal{L}($ Conseased rise in DO. hits across the detector. Countrate Inc. e, -330 -30 0 340 40 Time since left edge of bin of interest (s) $\Delta \hat{\mu} = \sigma_{\Delta \mu}^2 \sum_{i=1}^{N_{ ext{DOM}}} rac{\epsilon_i (r_i - \langle r_i angle))}{\langle \sigma_i angle^2}, \qquad \sigma_{\Delta \hat{\mu}}^2 =$ $\sum_{i=1}^{N_{ ext{DOM}}}rac{\epsilon_i^2}{\langle \sigma_i angle^2} igg)^{-1},$

IceCube Summer School: June 2024

DOM Effective Volume vs. Location

Variation in V_{eff} /DOM due to optical properties of the ice & QE of the PMTs.

DOM Effective Volume: Systematics

Systematic Uncertainty	Relative Size [%]	
Rate deviation in sliding average window	± 1.6	
Ice density vs. depth	± 0.2	
Mean e^{\pm} track length in ice	± 5.0	
Ice optical properties	[-3.6, +4.1]	
DOM efficiency	± 10.0	
Artificial deadtime	± 3.0	
Cross Sections (e^+p , e^-p , e^-O)	$< \pm 1, < \pm 1, \pm 0.2$	
zenith-dependent neutrino oscillation in Earth	[-0.2, +4.9]	
Total	[-15.0, +16.2]	

Seasonal Backgrounds: TeV Muons

Seasonal Muon Rate Correction

Atmospheric muons (3 kHz trigger rate) prod MeV system during CCSN signal windows.

Effect visible in correlation between ML test s proxy $\xi_{\mu} = (R_{\mu}^{\text{hit}} - \langle R_{\mu}^{\text{hit}} \rangle) / \sigma(R_{\mu}^{\text{hit}}).$

Zero out the correlation to produce a muon-co

Discussion in <u>Aartsen+ ApJ 890:111, 2020</u>.

Credit: A. Fritz, IceCube Collaboration [in prep.]

Seasonal Muon and False Alarm Rates: Before & After

Muon correction has a significant effect on the FAR of events with large TS (ξ).

Credit: A. Fritz, IceCube Collaboration [in prep.]

IceCube Sensitivity: TS Distribution of ξ_{corr}

Sensitivity & Discovery Potential

IceCube Summer School: June 2024

IceCube & SN 2023ixf

IceCube <u>was</u> running at the time of the breakout of SN 2023ixf (>99.7% duty cycle).

The **MeV** ν **burst** – which could have occurred ~1 week prior to breakout – could not be observed due to $1/r^2$ losses.

IceCube did search for TeV ν_{μ} events ±2 days from breakout. ATel #16043: null result.

The possibility of post-collapse TeV vproduction remains. If a coincident v is found IceCube will publish a realtime alert.

SN 2023ixf: MeV v Emission Limit

