

Cosmic rays & extensive air showers

Agnieszka Leszczyńska

Credit: Johannes Werthebach/NSF

- T. Wulf, A. Gockel and others...
- observations at higher altitudes inconclusive

courier.com

D. Pacini - concluded that radiation causing air ionization is mainly not of terrestrial origin

V. Hess - proved its extra-terrestrial origin

• 1911/12

VYTimes

J. Clay, A. Compton - CR intensity depends on latitude and follows geomagnetic field lines

• 1928 Bothe, Kolhörster - corpuscular nature of cosmic rays

 • 1933 T. Johnson showed East-West effect → CRs are positively charged

> forbidden particle track

P. Auger

primary cosmic-ray particle

geomagnetic field

 $\odot \odot$

 $\odot \odot$

East — West

 $\odot \odot$

 $\odot \odot$

atmosphere

permitted particle track

geographic North Pole

geomagnetic South Pole

Extensive air showers, cosmic rays reach energies around 10¹⁵ eV

• 1949

Ε,

3

E. Fermi - model of particle acceleration mechanism

Caltech

optical (red)

Ear

The

Cosmic rays are charged particles and atomic nuclei, constantly traveling throughout the space, some of them reach the Earth.

Direct measurements

Many excellent observations - still difficult to understand the entire picture

EAS develops longitudinally...

Extensive air showers

first interaction -EAS forms a curved disk of particles delay EAS development depends on the CR energy and type, cross section... thickness -A

Distributions of deposited energy and arrival times carry information about EAS development

...and laterally

Bulk of secondary particles arrive at the ground

Credit: CORSIKA

Electromagnetic cascades reliably described

Challenging to describe hadronic cascades:

- → phase-space not probed at accelerators
- → different phenomenological models exist

Extensive air showers

EAS development depends on the CR type → determines parameters of the hadronic production

Their origin remains mostly unknown, specially at the high energies and ultra-high energies...

Dembinski et al., EPJ Web Conf. 2019

Dembinski et al., EPJ Web Conf. 2019

Digital Optical Modules

IceCube

Astrophysical neutrinos (~10/year)
 Atmospheric neutrinos from air showers (~10/h)
 Downgoing muons (> 300 GeV) from air showers (~3000/s)

IceTop

Indirect measurements of PeV - EeV CR
 CR energy & direction event-by-event + average CR composition

2 optical modules per tank

IceTop/IceCube EAS detection

CR mass composition

TeV muons@lceCube

 $z = \frac{\ln(\rho_{\mu}) - \ln(\rho_{\mu,p})}{\ln(\rho_{\mu,Fe}) - \ln(\rho_{\mu,p})}$

Stef Verpoest, ECRS 2022

Results depend on a chosen hadronic model, but no significant deviations from the models

IceCube Observatory \rightarrow relative intensity

Anisotropy measurements

Dipole component

♦ Strong dipole at UHE → extragalactic origin
 ♦ Large- and small-scale structures at lower energies
 → strong energy dependency

- Elevated scintillator array
 - \rightarrow lowering the energy threshold
 - \rightarrow calibration of the snow attenuation

IceTop signals get attenuated due to **snow coverage**

- Elevated radio antennas
 - \rightarrow very good energy estimation
 - \rightarrow sensitivity to inclined air showers

Enhancing IceTop

Next generation of IceCube

Cosmic ray field

() large progress over decades of ground arrays, balloon & space missions

() more to learn about high-energy Universe and CR sources

i more comprahensive& precise measurements needed

IceCube is a very unique CR detector
secondaries detected with IceTop
high-energy muons detected with the in-ice array

Sources above "the knee"

- Need better estimation of CR composition
- Darge uncertainties from hadronic models
- Galactic models only up to PeV
- Transition region?
- Extragalactic sources at the UHE

IceTop/IceCube EAS detection

In-ice distribution sensitive to CR mass:

- heavier CR \rightarrow more muons \rightarrow more in-ice deposition
- ighter CR \rightarrow higher-energy muons \rightarrow local large deposition

https://physics.aps.org/articles/v9/125

Pierre Auger Observatory, Eur. Phys. J. C 80, 751 (2020)