HADISON 2024 SEARCHING FOR THE SOURCES OF GALACTIC COSMIC RAYS

The Fermi view of the Milky Way

Michela Negro Louisiana State University

Department of Physics & Astronomy

The Fermi-LAT "Diffuse" people

... J. M. Casandjian, S. W. Digel, A. Franckowiak, I.A. Grenier, G. Jóhannesson, M. Kerr, D. Malyshev, T. Mitzuno, I.V. Moskalenko, E. Orlando, T.A. Porter, A.W. Strong, L. Tibaldo, ..., M. Negro

Vela Project

050-3

FERM

Instantaneous FoV: π

Diffuse Galactic emission

~30%

~30%

----- Galactic Sources

Globular clusters Star-forming regions Binary systems

Pulsars, pulsar wind nebulae GeV halos

Novae, Supernova Remnants

Intensity Energy Spectrum

100% Blazars anisotropy

Fluctuation field

Larmor radii of Galactic CRs range from 10⁵ km at the lowest energies to 10⁻¹ pc near 10¹⁵ eV

Interstellar Medium

The Local Interstellar Cloud

The G Cloud

Oort Cloud

Solar Gravity Lens -As Veiwed from the Focal Line

Rogue Planets

Alpha Centaur

Oort Cloud

17

100,000 AU = 1.58 Light Years

From the sources...

By Charles Carter/Keck Institute for Space Studies

Interstellar Medium

The G Cloud

Rogue **Planets**

Alpha Centaur

PWNs Pulsars Halos Star Clusters **BH X-ray binaries** LHAASO Collaboration 11 Oct 2024

10,000 AU = .16 Light Years

100,000 AU = 1.58 Light Years

18

Through the interstellar medium... for 10⁸ years

Interstellar Medium

The Local Interstellar Cloud

The G Cloud

Oort Cloud

Solar Gravity Lens -As Veiwed from the Focal Line

Rogue Planets

Alpha Centauri

Gas Dust Radiation fields Magnetic fields

1000 AU = 138.6 Light Hours

10,000 AU = .16 Light Years

Oort

Cloud

100,000 AU = 1.58 Light Years

19

... some CR get to our instruments. We observe CR composition locally directly... AMS, CALET, DAMPE, ...

By Charles Carter/Keck Institute for Space Studies

Interstellar Medium

The Local Interstellar Cloud

The G Cloud

Oort Cloud

Solar Gravity Lens -As Veiwed from the Focal Line

Rogue Planets

Alpha Centauri

Oort Cloud

20

100,000 AU = 1.58 Light Years

... to our instruments. ... and indirectly via electromagnetic radiation

Interstellar Medium

The Local Interstellar Cloud

Oort Cloud

Solar Gravity Lens -As Veiwed from the Focal Line The G Cloud

Rogue Planets

Alpha Centaur

• Yurays trace CR interaction with gas, dust, ISRFs • the ISM is transparent to gamma-ray

1000 AU = 138.6 Light Hours

21

10,000 AU = .16 Light Years

100,000 AU = 1.58 Light Years

I OW AIG V-FAV DIOCUCECEP

ISM is a multiphase medium Gas

- neutral atomic hydrogen HI
- molecular hydrogen H₂
- Ionized hydrogen H⁺
- Dark gas (DNM)*

Interstellar Dust

ISRF

- CMB
- NIR (stellar emission)
- FIR (re-processing of the starlight by dust)

*Grenier et al. (2005)

Decay of neutral pions produced in hadron collisions (mostly protons)

Oort Cloud

Solar Gravity Lens -As Veiwed from the Focal Line

Roque Planets

Inverse Compton process

IC scattering of the interstellar radiation field by electrons and positrons

Oort Cloud

1000 AU = 138.6 Light Hours

10,000 AU = .16 Light Years

100,000 AU = 1.58 Light Years

22

 π_0 from hadron collision decays

CR interaction with HI

- measured directly via 21 cm line surveys - N(HI) All-sky Leiden–Argentine–Bonn (LAB) map*

*Kalberla et al. 2005

p-p collisions

23

The Galactic diffuse emission

 π_0 from hadron collision decays

CR interaction with H_2

- Indirectly traced by carbon monoxide (line of ¹²CO at 2.6 mm) assuming a linear conversion factor: $X_{CO} = N$ (H₂) W (CO)

p-p collisions

Dame, Hartman, Thaddeus 2001

The Galactic diffuse emission

 π_0 from hadron collision decays

CR interaction with Dark Gas - CO-dark H₂ - Self-absorbed HI

DNM* map = dust E(B–V) map - α (W_{CO} map) - β (N_{HI} map)

*Grenier et al. (2005)

p-p collisions

The observation of a uniform emissivity in the Solar Neighborhood provides a reference for the local interstellar spectrum of CRs well outside the heliosphere

Abdo et al. 2009, 2010b; Ackermann et al. 2011b, 2012b,d,e; Casandjian 2012

Y-ray emissivity

Molecular clouds y-ray emissivity

Constrain the propagation of CRs in the halo of the Milky Way with LAT data.

- Tracing the distribution of CR nuclei in the halo
- Uncertainty: distance of the clouds

L. Tibaldo et al (MN) 2015 ApJ 807 161

The Galactic diffuse emission

IC - GALPROP*

The Fermi-LAT collaboration 2019

Inverse Compton process

The ISRF cannot be observed directly, so need to know:

 models of the interstellar dust models of the stellar populations

Note on the dust: "in some regions we observed an average dust column density 45% higher than predictions based on N(HI)"

Casanjian et al 2022,

Evidence for large-scale excesses associated with low HI column densities in the sky I. Dust excess

Know your sources of CRE

A few-degrees extended y-ray halo in the direction of Geminga pulsar has been detected.

HAWC, Science (2017)

Why looking for a GeV Halo?

To better constrain the spectral index of the gamma-ray (and CRE) spectrum

GeV haloes around pulsars

Many more halos found: all detected as extended with a GeV γ-ray (~15-80 pc)

- Evidences of **low-diffusion bubbles** around pulsars!
- The diffusion coefficient is $(2-30)\times10^{26}$ cm²/s at I TeV (x100 smaller than the average value in the Galaxy.

Implication on the interpretation of the local positron excess, and/or the GeV CG access (See TeV halos around MSP D. Hooper 2022)

Coming soon! – 2FGES: Catalog of GeV Extended Sources (Fermi-LAT, Lead by S. Abdollahi & P. Martin)

Di Mauro, Manconi and Donato (2021)

32

The Galactic diffuse emission

Large-scale structures: missing MW counterpart

- Fermi Bubbles
- GeV Excess
- Loop I

The Fermi-LAT collaboration 2019

The Fermi Bubbles Su, Slatyer, Finkbeiner 2010

Finkbeiner 2003

B B B B

FB

- elliptical
- ~ 55° × 45° (north–south, east–west) in diameter
- symmetric about the Galactic center (but not really, see next slide)
- vertical axis perpendicular to the Galactic plane
- roughly uniform in γ -ray intensity

eRB

- ~spherical
- 80° x 80-85° (longitude, latitude)
- symmetric (????)
- vertical axis (????)
- Not uniform in x-ray intensity

VHE emission from Fermi Bubbles?

Detection of TeV gamma rays from the base of the Fermi bubbles by H.E.S.S.

Injection of relativistic CR at or near the Galactic Center about 100,000 years or less in the past

supernova explosions near the GC

outburst from Sagittarius A*

- PoS: E. Moulin, et al on behalf of the H.E.S.S. Collaboration
- The HESS and the Fermi-LAT Collaboration 2024 in prep

Template fitting

Method based on the fitting of the Fermi-LAT counts map by a linear combination of templates spatially correlated with predicted production sites of γ-rays.

$$\begin{split} N_{\text{pred}}(E, l, b) &= \sum_{i=\text{gas}} q_i(E) \widetilde{I}_i(l, b) + N_{\text{IC}}(E) \widetilde{I}_{\text{IC}_p}(E, l, b) \\ &+ N_{\text{iso}}(E) \widetilde{I}_{\text{iso}} + N_{\text{LoopI}}(E) \widetilde{I}_{\text{LoopI}}(l, b) \\ &+ N_{\text{patch}}(E) \widetilde{I}_{\text{patch}}(l, b) + N_{\text{Bubbles}}(E) \widetilde{I}_{\text{Bubbles}}(l, b) \\ &+ \sum_{i=\text{point src}} N_{\text{pt}_i}(E) \widetilde{\delta}(l, b, i) \\ &+ \sum_{i=\text{extend src}} N_{\text{ext}_i}(E) \widetilde{I}_i(l, b) + \widetilde{I}_{\text{Sun}_\text{Moon}}(E, l, b) \\ &+ N_{\text{limb}}(E) \widetilde{I}_{\text{limb}}(l, b), \end{split}$$

The current model gll_iem_v07.fits

Uncertainties are inevitably large: bare this in mind when doing Fermi-LAT data analyses (especially of large region in the sky, e.g., the Galactic center)

Fermi Source Catalogs

The Fermi-LAT GDE model

Time for new approaches?

towards the 5FGL

Decomposition of diffuse into 4 components with 4 spectra: a possibility

Uncertainties

- As much as ~50% uncertainties in the ISM gas column density and the CR intensity. Major sources of systematic errors: * 10–40% uncert. due to HI spin temperature (optical depth) ??% the modeling of the IC scattering ₩ 10% the absolute determination of the LAT effective area \mathbf{X}
- Source confusion: inevitable contribution from unresolved point sources, it can result in significant systematic uncertainties
- Unknown unknowns about our Galaxy

om	Spatial distribution	Spectrum
HI	good (only local)	moderate (rest
H+	very poor	poor
H2	moderate	moderate
IC	moderate	moderate
LSS	very poor	very poor
lsotropic	good	poor

Assessment by Jean-Marc Casandjian

The Compton Spectrometer and Imager

COSI is the future NASA SMEX

- It is a soft gamma-ray survey telescope
 - ***** 0.2-5 MeV
 - * Spectrometer
 - ***** Imager
 - ***** Polarimeter

To be launched in 2027!

Parameter	Requirements	
Energy range	0.2-5 MeV	
Sky coverage	100%-sky each day	
Energy resolution	0.2-1% FWHM	
Angular resolution	2.1º FWHM @ 1.8 MeV (26Al	
Localizations	<1.0° for GRBs	
Polarization sensitivity	For GRBs, AGN, Galactic BHs	

The Compton Spectrometer and Imager: COSI

MeV view of the Galactic diffuse emission

insights for CRE population that produce MeV gamma-rays through IC

MeV Galactic diffuse emission with unprecedented sensitivity: better modeling

FIG SAG

Future Innovations in Gamma Rays

We will explore gamma-ray science priorities, necessary capabilities, new technologies, and theory needs to inspire work toward 2040. Get involved and stay informed:

https://forms.gle/VBijBgapMRwJm9dU6

Chairs: Chris Fryer & Michelle Hui, Paolo Coppi, Milena Crnogorčević, Tiffany Lewis, Marcos Santander, and Zorawar Wadiasingh

Subscribe to the mailing list to stay informed !

Subscribe to the mailing list to stay informed !

MADISON 2022 SEARCHING FOR THE SOURCES OF GALACTIC COSMIC RAYS

Thank you for your attention.

Michela Negro Louisiana State University

> **Department of** Physics & Astronomy

SEARCHING FOR THE SOURCES OF GALACTIC COSMIC RAYS

BACE DISTANCE DE LOUISIANA STATE UNIVERSITA

Department of Physics & Astronomy

Vela satellites

1956 - 1982 — NASA project to detect nuclear detonation in the atmosphere.

COS-B

Early '70s — ESA mission which dedicated to the γ-ray sky exploration in the (0.05 - 10) GeV energy range.

INTEGRAL

2002 - Now — ESA mission devoted to the study of sources and transients events in the low-energy γ-ray regime (below 10 MeV)

AGILE

2007 - Now — Small Italian Mission.

OSO-3

Late '60s — NASA satellite which detected 621 y-rays above 50 MeV.

NASA mission

EGRET

1991 - 2000 — NASA mission which detected γ -rays in the (0.02 - 30) GeV energy range.

50

0

2008 - Now — NASA mission

Fermi-LAT CRE spectrum

GOAL: identify electrons and positrons out of cosmic rays background in Fermi-LAT data (and compute their energy spectrum)

Work lead by R. Bonino, N. Cibrario, MN

Supervised Learning:

- Boosted Decision Trees: published in 2017
- Seural Networks → similar results
- Supervised approach implies training on Monte Carlo simulations:
 - \rightarrow strong dependence on models and simulations quality

 \rightarrow sensitive to important systematic uncertainties or biases

Unsupervised Learning:

- \checkmark No labels and minimum human supervision:
 - \rightarrow independence of models / MC \rightarrow systematic uncertainties reduced
- **Difficulty**: very different cluster sizes (i.e. background dominant wrt signal)

Stay tuned!

Nucleosynthesis to trace ISM

- Nucleosynthesis processes and their implications on the interstellar medium (Location of CR sources + feedback onto the ISM)
- line shape diagnostic: separate the rotational effect from the total line; improve the knowledge of galactic rotation

MeV view of the Fermi Bubbles

Dust Exess

good tracer for $N_{\rm H\,I}$.

Figure 12. All-sky Mollweide display of the excess of optical depth at 353 GHz compared to $N_{\rm H\,I}$ predictions: $\tau_{353} - N_{\rm H\,I} \times \sigma_{e353}$. We used the opacity $\sigma_{e353} = 8.9 \times 10^{-27}$ cm² measured in the Pegasus-Aquarius mask. The color is scaled linearly with the map intensity, and a 30° spaced grid is superimposed. We masked pixels with $\tau_{353}/\sigma_{e353} - N_{\rm H\,I} > 2 \times 10^{20}$ cm⁻² where τ_{353} is not a

UGRB Intensity Spectrum

Blazars

Misaligned AGNs

Star forming Galaxy

Dark Matter

FSRQ + BLL = 100% UGRB anisotropy

M. Korsmeier, E. Pinetti, **M.N**, M. Regis, N. Fornengo, ApJ 202⁵⁶

Implications for the UGRB intensity spectrum

M. Korsmeier, E. Pinetti, M.N., M. Regis, N. Fornengo, ApJ 2022

FSRQ + BLL = 100% UGRB anisotropy

Those blazars provide a significant contribution to the UGRB

- about 30% between 10 and 100 GeV
- about 20% below 1 GeV

M. A. Roth et al. Nature 597, 341–344 (2021)

Galactic Latitude (deg)

-79 30

120

Use the line width to separate components in the gamma-ray emissivity fit

HI line width

Figure 1. (a) $W_{\rm HI}$ map of the IVCs, (b) $W_{\rm HI}$ map of narrow H I, (c) $W_{\rm HI}$ map of broad H I, and (d) $W_{\rm CO}$ map. All these maps are shown in units of K km s⁻¹. 58

