SUGAR conference — 15-17 October 2024, Madison (Wisconsin)

ISTITUTO NAZIONALE
DI ASTROFISICA NATIONAL INSTITUTE
FOR ASTROPHYSICS

Young Stellar Clusters as Cosmic Ray sources

Giovanni Morlino

INAF/Osservatorio astro fisico di Arcetri - Firenze - ITALY

Summary

- ✤ Motivation: the *unsatisfactory* SNR paradigm for the CR origin
- ✤ Observational evidences of young stellar clusters (YSC) as cosmic ray sources
- ✤ The wind-bubble structure
- ✤ Possible acceleration mechanisms:
	- ✤ The wind termination shock model
	- ✤ Wind termination shock + supernovae
- ✤ Contribution of YSCs to diffuse *γ*-ray emission

How to explain the origin of Galactic CRs

Requirements for sources to explain the CR flux

- ❖ Energetics: $\sim 10^{40}$ erg/s
- ❖ Injected spectrum < PeV: ∝ *E*−2.3
- $*$ Maximum energy (p): $\lambda \approx 10^{15}$ eV
- \star Anisotropy: $\sim 10^{-3}$ @ 10 TeV
- ❖ Composition: few anomalies w.r.t. Solar

The SNR paradigm for the origin of CRs

The *Supernova Remnant paradigm***: why supernova remnant are so popular?**

- Enough power to sustain the CR flux (~10% of kinetic energy)
- Spatial distribution of SNRs compatible with CR distribution
- Enough sources to explain anisotropy
- Observations show the presence of non thermal particles
- A well developed theory for particle acceleration (DSA)

-
-
- No evidence of acceleration beyond ~ 100 TeV even in very young SNRs • From theory only very powerful and rare SNRs can reach PeV • Anomalous CR composition cannot be easily explained (eg. 22Ne/20Ne)
- Spectral anomalies: p, He, CNO have different slopes at injection

However:

Looking for additional sources

The role of star clusters

Massive stars born in OB associations

-
-

The role of star clusters

Recently several massive star clusters have been associated with gamma-ray sources

Cygnus Cocoon HAWC coll. Nat. Astr.(2020) Westerlund 1; HESS coll. A&A (2022) W40 - FermiLAT Sun et al. (2020)

Massive stars born in OB associations

-
-

Young Star Clusters detected in *γ*-rays so far

Westerlund 1

- ๏ Observed byt H.E.S.S. up to ~150 pc
- ๏ Hard emission up to ~100 TeV
- ๏ No significant spatial variation of spectral index
- ๏ Leptonic origin? [Härer et al., 2023]

H.E.S.S. *γ*-ray map [Aharonian et al. (2022), A&A 666, 124]

Cygnus cocoon

- ๏ Extended emission:
	- ➡ beyond 50 pc for HAWC and Fermi-LAT
	- ➡ and up to ~150 pc for LHAASO
- ๏ Hard spectrum in GeV band
- ๏ Softening in TeV band
- ๏ Photons detected by LHAASO with *E* > PeV

Cygnus Cocoon FermiLAT - HAWC coll. (2020) Ackermann et al. (2011) HAWC coll. (2020) LHAASO coll. (2023)

Correlation between YMSC and Fermi-LAT unassociated sources G. Peron et al. ApJL 972 (2024)

✤ Very significant correlation between SCs from the WISE catalog and unassociated Fermi-LAT sources

The case of NGC 3606: the HII region well overlap with the predicted bubble size

Spectra and radial profiles

profile in the FermiLAT band

3) Not always true in TeV emission (Cygnus - HAWC; Wd1 - HESS)

[Aharonian, Yang & Wilhelmi, Nat. Astr. (2019)]

What power Stellar Clusters?

Size: Cluster core $\sim 1 \,\rm pc$ Termination shock $\;\sim 5-10\,\mathrm{pc}$ Bubble $\sim 50-100\,\mathrm{pc}$

$3 \text{ Myr} \lesssim t \lesssim 30 \text{ Myr}$: stellar winds + SNe

Stellar cluster kinetic luminosity

Energetics: SNe *vs* Stellar Winds

Salpeter (1955) initial mass function of stars inside a cluster:

✤ Not accounting for WR stars

• Not accounting for failed supernovae ~10% of the total [\[Adams et al. \(2017, MNRAS 469\)](https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.1445A/abstract)]

$$
P_{\rm SNe} = \left(10^{51} \text{erg}\right) \int_{8M_{\odot}}^{M_1} f(M) \, dM
$$

$$
P_{\text{wind}} = \int_{M_{\text{min}}}^{M_{\text{max}}} \left(\frac{1}{2} M_w(M) v_w(M) \right)
$$

$$
\text{ter:} \qquad f(M) = \frac{dN_{\text{star}}}{dM} \propto M^{-2.35}
$$

Stars with $M \geq 8M_{\odot}$ explode as SNe

$$
\frac{P_{\text{wind}}}{P_{\text{SNe}}} \simeq 0.1 \div 0.5
$$

Power injected by SNe

Power injected by winds

Cluster wind physics

t ≲ 3 Myr: only stellar winds

•**Wind-blown bubble**: adiabatic model from Weaver & McCray (1977) Constant injection of energy in time in a spherical symmetry

 $R_{\text{cluster}} \simeq 1 - 2 \,\text{pc}$ Observation of star distribution

$$
R_{\text{bubble}} \simeq 55 \text{ pc} \left(\frac{\dot{M}}{10^{-4} M_{\odot}/\text{yr}}\right)^{1/5} \left(\frac{v_w}{1000 \text{ km/s}}\right)^{2/5} \left(\frac{\rho_0/m_p}{\text{cm}^{-3}}\right)^{-1/5} \left(\frac{t_{\text{age}}}{\text{Myr}}\right)
$$

$$
R_{\text{TS}} \simeq 20 \text{ pc} \left(\frac{\dot{M}}{10^{-4} M_{\odot}/\text{yr}} \right)^{3/10} \left(\frac{v_w}{1000 \text{ km/s}} \right)^{1/10} \left(\frac{\rho_0/m_p}{\text{cm}^{-3}} \right)^{-3/10} \left(\frac{t_{\text{age}}}{\text{Myr}} \right)
$$

 $R_{CD} \simeq R_{\text{bubble}}$ Rapid cooling of shocked ejecta

Caveat 1: non spherical evolution

[Weaver & McCray (1977)]

Pure adiabatic model **Effects that produce HD instabilities:**

- ISM inhomogeneities
- Wind clumpiness (WR)
- Cooling

Effects that damp HD instabilities:

- Magnetic field pressure
-

[see e.g., L. Lancaster et al. (2021)]

- Particle transport
- **Emission processes**

Particle acceleration at the wind termination shock

- Particle injected and accelerated at the termination shock
	- \blacktriangleright Acceleration efficiency ~1-10 %

Acceleration at the collective wind termination shock [GM et al. (2019)]

GM, Blasi, Peretti & Cristofari (2019)

Particle acceleration at the wind termination shock

Acceleration at the collective wind termination shock [GM et al. (2019)]

Assuming a fraction η_B of kinetic energy converted into magnetic field

- Particle injected and accelerated at the termination shock \blacktriangleright Acceleration efficiency ~1-10 $\%$
- Magnetic turbulence produced by MHD instabilities
	- ➡ Diffusion coefficient depends on the type of turbulence cascade: Kolmogorov, Kraichnan, Bohm

1) MHD turbulence:

$$
\frac{\delta B^2}{4\pi} 4\pi r^2 v_w = \frac{1}{2} \eta_B \dot{M} v_w^2 \implies \delta B(R_s) \simeq 4 \mu G \left(\frac{\eta_B}{0.05}\right)^{\frac{1}{2}} \left(\frac{1}{10^{-1}}\right)^{\frac{1}{2}} = 4 \mu G
$$

GM, Blasi, Peretti & Cristofari (2019)

Particle acceleration at the wind termination shock

Acceleration at the collective wind termination shock [GM et al. (2019)]

- Particle injected and accelerated at the termination shock \blacktriangleright Acceleration efficiency ~1-10 $\%$
- Magnetic turbulence produced by MHD instabilities
	- ➡ Diffusion coefficient depends on the type of turbulence cascade: Kolmogorov, Kraichnan, Bohm

GM, Blasi, Peretti & Cristofari (2019)

$$
\mathcal{F}_0(k) = \frac{\pi \xi_{CR}}{2} \frac{v_{sh}}{\Lambda_p} = \frac{\pi \xi_{CR}}{2} \eta_b^{-1/2} \approx 0.06 \frac{\xi_{CR}}{0.1} \left(\frac{\eta_B}{0.05}\right)
$$

2) Self-generated magnetic turbulence Applying resonant instability:

3) Non-resonant instability is suppressed (too small current)

Particle acceleration at the wind termination shock

Acceleration at the collective wind termination shock [GM et al. (2019)]

- Particle injected and accelerated at the termination shock \blacktriangleright Acceleration efficiency ~1-10 $\%$
- Magnetic turbulence produced by MHD instabilities ➡ Diffusion coefficient depends on the type of turbulence cascade: Kolmogorov, Kraichnan, Bohm
- Particle diffuse and interact in the bubble

Hadronic
$$
p_{cr} + p_{gas} \rightarrow p + p + \pi^{\pm} + \pi^{0}
$$

\n
\nLeptonic IC: $e_{cr} + \gamma_{CMB,IR,opt} \rightarrow e_{cr} + \gamma_{HE}$

GM, Blasi, Peretti & Cristofari (2019)

Particle acceleration at the wind termination shock

Solution at the shock

\n $f_s(p) = s \frac{\eta_{\text{inj}} n_1}{4\pi p_{\text{inj}}^3} \left(\frac{p}{p_{\text{inj}}} \right)^{-s}$ \n	\n $e^{-\Gamma_1(p)} e^{-\Gamma_2(p)}$ \n
\n Standard power-law\n \n for plane shocks\n \n $s = \frac{3\sigma}{\sigma - 1}$ \n	\n Cutoff due to particle confinement\n \n upstream in a spherical geometry\n

due to particle **from the bubble**

Particle acceleration at the wind termination shock

GM, Blasi, Peretti & Cristofari (2019)

Cutoff due to particle escaping from the bubble Bohm Kraichnan Kolmogorov 10^{-4} 10 100 100 10^{4} 10 100 100 10^{4} 0.001 0.010 0.100 1 p [TeV/c] $\boldsymbol{\mathsf{Q}}$ $\boldsymbol{\mathsf{S}}$ \mathcal{F} $\overline{}$ ξ,p $\overline{}$

Solution at the shock

coefficient the flatter is the CR distribution

Blasi & GM (2023)

Assumed properties

- \cdot Wind luminosity $\simeq 2 \times 10^{38} \, \text{erg s}^{-1}$
- \cdot Ejecta mass $M \simeq 10^{-4} M_{\odot} \,\mathrm{yr}^{-1}$; ·
/ $\dot{M} \simeq 10^{-4} M_{\odot} \,\rm yr^{-1}$
- \cdot wind speed v_w ≈ 2300 kms⁻¹
- ✤ Cluster age ≃ 3 Myr
- \cdot Average ISM density $\simeq 10 \, \mathrm{cm}^{-3}$

The case of Cygnus Cocoon Menchiari, GM, Amato, Bucciantini & Beltran (2024)

Termination shock radius ≃ **13 pc**

Wind luminosity inferred from stellar population as reported by Wright et al. (2015) MNRAS, 449, 741

Estimated size of the bubble $\simeq 90$ **pc**

Blasi & GM (2023)

The case of Cygnus Cocoon Menchiari, GM, Amato, Bucciantini & Beltran (2024)

The most realistic scenario is something in

Blasi & GM (2023)

The case of Cygnus Cocoon Menchiari, GM, Amato, Bucciantini & Beltran (2024)

When LHAASO data are considered:

- ✤ Large magnetic field required $(\eta_B \gtrsim 20\,\%)$
- ✤ Kraichnan is not sufficient
- ✤ Bohm may explain the data but Fermi-LAT data are not well fitted
- ✤ Difficult to reproduce the extension of ~150 pc

Leptonic contribution to the Cygnus Cocoon

[Guevel et al. \(2022\)](https://arxiv.org/pdf/2211.07617.pdf) estimated un upper limit to the leptonic contribution from the Cygnus Cocoon region looking at the X-ray emission with Swift-XRT telescope.

 F_X (2-10 keV) < (5-8) x 10⁻¹¹ erg cm⁻² s⁻¹

Cygnus Cocoon region in X-rays

IC contribution at 1 TeV < 25% of the observed one

26

Gas density and the question of grammage

Particle density distribution in Giant Molecular Clouds [Hou & Han, 2014]

Average density felt by diffusing particles \rightarrow depends on the clump distribution and by diffusion around each clump $\langle n \rangle \simeq 10 \text{ cm}^{-3}$

Grammage is negligible Grammage can be relevant

$\bar{n} \simeq 10 \text{ cm}^{-3}$

Average density small if diffusion outside the bubble is fast $\langle n \rangle \simeq 10^{-2}$ cm⁻³

Weaver & McCray, ApJ 218 (1977)

Predicted ratio p/He at the source from a single powerful SC (lines) compared to p/He measured by AMS-02 [AMS coll. PRL 115 (2015)] Assumed parameters: $L_{wind} \simeq 10^{38} \text{ erg/s}$; age $\simeq 3 \text{ Myr}$

H and He spectra escaping from the bubble [P. Blasi, GM (2024) MNRAS 533, 561]

Note: a fair comparison requires to account for the entire population of SCs with different luminosities

Heavier nuclei

Spectrum of different species escaping the bubble for a young MSC (like Cygnus OB2 $L_{\rm wind} \gtrsim 10^{38}\,{\rm erg/s})$

- ✤ H and He can escape the bubble suffering only a little energy losses
- Spallation for heavier nuclei is much stronger ($\sigma_{\rm sp} \propto A^{0.7}$)
	- ✦ Nuclear have a harder spectrum
	- ✦ The flux normalisation is suppressed

Possible caveats:

- ✤ Heavier nuclei may be mainly produced by SNRs
- ✤ SNR acceleration may be modified in wind-bubbles
- ✤ Heavier nuclei may be mainly produced at later phase of the bubble, when the diffusion is not suppresses any more

$Old clusters \rightarrow super-bubbles$

Termination shock?

- Does the TS still exist?
- The turbulence in the bubble remains high due to wind and SN explosions \rightarrow Efficient particles confinement in the bubble
- Maximum energy probably similar to the WTS case

 $N_{\star} = 500$

- Does the TS still exist?
- The turbulence in the bubble remains high due to wind and SN explosions \rightarrow Efficient particles confinement in the bubble
- Maximum energy maybe enhanced if MF is amplified by stellar winds

$Old clusters \rightarrow super-bubbles$

$Old clusters \rightarrow super-bubbles: intermittency$

- ❖ **Energetically Super-bubbles may produce the bulk of CRs**
- ❖ **Maximum energy can reach ~PeV**
- ❖ **The spectrum is not universal -> strong intermittency**

SNR expanding into super-bubbles

Main effects on the SNR evolution

1. High temperature \Rightarrow low Mach number

Example: first SN expanding into the shocked wind

Shocked wind temperature: Sound speed:

CAVEAT:

Temperature may decrease due to radiative losses/heat conduction

$$
k_B T_b = \frac{3}{16} m_p v_w
$$

$$
c_{\text{sound}} = \sqrt{\gamma k_B T_b / m_p}
$$

$$
\Rightarrow M = \frac{v_{sh}}{c_s} = 3.6 \left(\frac{v_{sh}}{5000 \text{ km/s}} \right) \left(\frac{v_w}{2500 \text{ km/s}} \right)^{-1}
$$

$$
\tau_{\text{cool}} \simeq 6 \left(\frac{T}{10^6 K} \right)^{1.7} \left(\frac{n}{0.01 \text{ cm}^{-3}} \right)^{-1} \text{Myr}
$$

SNR expanding into super-bubbles

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
	- low Alfyénic Mach number

Example: first SN expanding into the shocked wind

If the magnetic field is produced by wind turbulence:

$$
\frac{B^2}{4\pi}v_w = \eta_B L_w \Rightarrow B_b \simeq 10 \,\mu\text{G}
$$

Then the Alfvénic Mach number is

$$
M_A = \frac{v_{\text{sh}}}{v} = \sqrt{\frac{4}{11 \,\text{m}} \frac{v_{\text{sh}}}{v}} \ge 4
$$

 $11\eta_B$ v_w

*v*A

SNR expanding into super-bubbles

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
	- low Alfyénic Mach number

Example: first SN expanding into the shocked wind

If the magnetic field is produced by wind turbulence:

Than the Alfvénic Mach number is

b₂

The maximum energy increases:

$$
\frac{B^2}{4\pi}v_w = \eta_B L_w \Rightarrow B_b \simeq 10 \,\mu\text{G}
$$

$$
M_A = \frac{v_{\rm sh}}{v_{\rm A}} = \sqrt{\frac{4}{11\eta_B} \frac{v_{\rm sh}}{v_w}} \ge 4
$$

$$
E_{\text{max}}^p \simeq 2 \, \mathcal{F} \, \left(\frac{B_0}{10 \mu G} \right) \left(\frac{M_{\text{ej}}}{M_{\odot}} \right)^{-\frac{1}{6}} \left(\frac{E_{\text{SN}}}{10^{51} \text{erg}} \right)^{\frac{1}{2}} \left(\frac{n_0}{0.01 \text{cm}^{-3}} \right)
$$

Diffusion needs to be Bohm-like

Mitchell et al. arXiv: 2403.16650

 $\overline{6}$

Mitchell

arXiv: 2403.16650

SNR expanding into super-bubbles

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
	- low Alfvénic Mach number
	- faster acceleration time
	- enhanced syn. losses

WTS+SNRs: application to some known SCs

[Mitchel, GM, Celli, Menchiari, Specovious (2024) arXiv:2403.16650]

 10^{-1}

Energy (TeV)

 $10⁰$

SNe

Frag.

 $10²$

 $10¹$

Applying the model of WTS+SNR for three SC detected in gamma-rays:

- ✤ Uncertainty due to SC masses and wind models
- ✤ WTS alone is not sufficient to explain the gamma-ray flux (assuming 10% efficiency)
- ✤ SNR are needed (#SNe estimated according to SC age and mass)
- ✤ Flat spectra (Wd2 & NGC 3603) require Bohm like diffusion in the bubble

WTS+SNRs: application to Gaia SCs

[Mitchel, GM, Celli, Menchiari, Specovious (2024) arXiv:2403.16650]

Integral γ -ray flux above 1 TeV from the cluster bubble, plotted as a function of the bubble size Compared to CTA sensitivity for extended sources

North hemisphere **North hemisphere** >1TeV (TeV cm⁻²s⁻¹) 10^{-11} **UBC 334 NGC 1960 NGC 884** 10^{-12} **D**olidz NGC 2571 - The Unc 344 $F_{\!\!\!~}^{\!\!\!~}$ Berkeley 6 10^{-13} NG<mark>C 7261</mark> hemisphere **South hemisphere** NGC 6231 1 TeV (TeV cm $^{-2}$ s $^{-1}$) 10^{-11} **UBC_334** C<mark>I</mark> 2395 **NGC 1960** 10^{-12} NGC 2571 South C<mark>z</mark>erhik 41 $\mathsf{F}_{\!\!\!~}$

 10^{-13}

The unresolved clusters

SC bubbles are very large ⇒ **diffuse sources with low surface brightness** ⇒ **difficult to detect**

$$
R_{bubble} \simeq 2.9^{\circ} \left(\frac{L_w}{2 \times 10^{38} \text{ erg/s}}\right)^{1/5} \left(\frac{n_{\text{ism}}}{10 \text{ cm}^{-3}}\right)^{-1/5} \left(\frac{t_{\text{age}}}{1 \text{ Myr}}\right)^{3/5} \left(\frac{d}{2 \text{ kpc}}\right)
$$

May SC contribute to diffuse $γ$ **-ray emission?**

Claimed discrepancy between diffuse emission due to CR and observations

- •Not clear if Gaia catalogue is complete (maybe only for $d \lesssim 2$ kpc)
- •Difficult to detect young clusters ($t \leq 1 2$ Myr) embedded in the
- parent molecular cloud due to stellar light extinction
- •Difficult to resolve the most inner stars: core very dense (mass segregation)

⇒The problem may be handled with synthetic population

- •How many SC there are in the Galaxy
- •How are they distributed?

Gaia satellite has observed thousand of SCs but:

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Gamma-ray emission

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

- **Clusters population**
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

• Radial distribution: rescaled with the molecular cloud spatial distribution

Gamma-ray emission

$$
f_c(M, t, R, z) = \frac{dN_c}{dM dt dR dz} = \xi_c(M) \psi_c(t) \rho_c(R, \theta_{arm}) g(z)
$$

• Age distribution \sim constant in the last \sim 100 Myr with a surface star formation rate in the solar neighbourhood given by [Lamers & Gieles (2006)]

 $\langle \psi_c \rangle_{SN} \simeq 350 M_{\odot} \text{Myr}^{-1} \text{ kpc}^{-1}$

• Mass distribution based on observation of $\textsf{local clusters}$ ($d \lesssim 2 \, \text{kpc}$) Milky Way Stellar **Cluster Survey** [Piskunov et al. (2018)]

$$
\xi_c(M) \propto M^{-\alpha} \text{ with } 1.1 < \alpha < 1.6
$$

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- **Stellar population inside clusters**
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Maximum stellar mas as a function of the cluster mass for different models [Fig. 1 from Weidner & Kroupa, 2004]

• Maximum stellar mass according to Weidner & Kroupa (2004) The maximum stellar mass play a crucial role

because the wind power is mainly determined by the most massive stars

$$
\xi_s(M) = \frac{dN}{dM} \propto \begin{cases} M^{-1.3} & 0.08 \le M/M_{\odot} \le 0.5 \\ M^{-2.3} & 0.5 \le M/M_{\odot} \le M_{\text{max}}^* \end{cases}
$$

• Stellar mass distribution according to Kroupa (2001)

$$
M_{\star,\ \rm max} \propto M_{\rm SC}
$$

•Analytical approximation for the **mass loss rate** [Nieuwenhuijzen & de Jager (1990)]

•**Wind speed** from line-driven wind models [Kudritzki & Puls (2000)] The wind velocity is generally larger than the escape speed due to the radiation pressure from the star

$$
\dot{M}_s \simeq 10^{-14} \left(\frac{L_s}{L_\odot}\right)^{1.42} \left(\frac{M_s}{M_\odot}\right)^{0.16} \left(\frac{R_s}{R_\odot}\right)^{0.81} \frac{M_\odot}{\text{yr}}
$$

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

$$
V_{w,s} = C(T_{\text{eff}}) v_{\text{esc}}
$$

\n
$$
V_{\text{esc}} = \sqrt{2G_N M_s / R_s (1 - L/L_{\text{Edd}})}
$$

\n
$$
C_{\text{eff}} =\begin{cases} 1.0 & T < 10^4 \text{K} \\ 1.4 & 10^4 \text{K} < T < 2.1 \times 10^4 \text{K} \\ 2.65 & T > 2.1 \times 10^4 \text{K} \end{cases}
$$

- Clusters population
- Stellar population inside clusters
- **Stellar wind physics**
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

> • Wind-blown bubble model of Weaver & McCray (1977) Constant injection of energy in time in a spherical symmetry

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- **Cluster wind physics**
- Particle acceleration model
- Gas distribution (target)

• Correction due to cooling at the contact discontinuity: using a phenomenological recipe based on simulation from Lancaster L. et al.(ApJ 914, 2021)

 $R_{\text{bubble}} = f_{\text{cool}}(t) R_{\text{bubble}}^{\text{WM}}$

Gamma-ray emission

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

> • Acceleration at the wind termination shock [GM, Blasi, Peretti, Cristofari (2019)]

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- **Particle acceleration model**
- Gas distribution (target)

Gamma-ray emission

Building a synthetic SC population

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- **Gas distribution (target)**

Gas distribution in the Galactic plane according to the one implemented in the GALPROP code including atomic and molecular Hydrogen

Single realisation of stellar cluster population with:

Example of a synthetic SC population

✤ Age < 10 Myr ✤

[Menchiari, GM et al. (2024) arXiv:2406.04087]

x [kpc]

Applied masks

The SC gamma-ray bubble are masked to be consistent with the method used by the LHAASO coll.

Masks: 1) Galactic plane $(l \le 70^{\circ}, |b| \le 1.5^{\circ})$ and local arm $(l = 73.5^{\circ}, b = 0)$ 2) All SCs having surface brightness at 100 TeV > 5 times the average diffuse emission

[Menchiari, GM et al. (2024) arXiv:2406.04087]

LHAASO mask

Contribution of SCs to the diffuse Galactic γ-ray emission [Menchiari, GM et al. (2024) arXiv:2406.04087]

A composite scenario for the CR spectrum

[Vieu & Reville, MNRAS 2023]

Attempt to explain the all-particle spectrum with a combination of isolated SNRs + wind termination shock + SNR in compact clusters

Caveats:

- ✤ Diffusion in the bubble not understood yet
- ✤ Evolution of SNR inside bubble unclear
- ✤ Effect of grammage increase not included

Slope and maximum energy not very well determined

Conclusions

- ✤ Stellar clusters play a crucial role in the origin of cosmic rays
	- ✦ They host the majority of core-collapse SNe
	- ✦ They shape the environment where SNRs expand ✦ Powerful stellar winds may accelerate CRs in addition to SNR shocks
	-
- ✤ SCs may help to resolve several issues:
	- **← Significant contribution to diffuse γ-ray Galactic emission**
	- ✦ Maximum energy of CRs (most promising are SNR expanding into wind bubbles)
	- ✦ Anomalous chemical composition (acceleration of wind material)
	- ✦ Spectral anomalies
		- ➡ The accumulated grammage produce harder spectra for heavier species
		- \rightarrow Good for p / He ratio, not for heavier elements
- ✤ It is crucial to better understand the time evolution of both wind bubbles and SNR inside them

