Investigating the CREDIT history of supernova remnants as cosmic-ray sources

Philipp Mertsch with Anton Stall and Chun Khai Loo

SuGAR 2024 14 October 2024, Madison, WI

Supernova remnants have long been considered the sources of cosmic rays

1 Observations

- 2 Energetics
- **3** Shock acceleartion

Lopez and Fesene (2018)

We do not know individual sources of *local* cosmic rays

Anisotropies:

Problem: cosmic rays diffuse

We do not know individual sources of *local* cosmic rays

Anisotropies:

Spectrum:

Problem: cosmic rays diffuse

We do not know individual sources of *local* cosmic rays

Anisotropies:

Spectrum:

 \blacktriangle

DRAGON modulated spectrum (black solid) and the solution of the single-source transport equation computed in this work Supernova remnant paradigm for the age tage tage \sim 105 yr (blue solid line). Other ages (redshift \sim

1 000 - 100 000 "active" supernova remnants in the Galaxy

Genolini et al. (2017)

Problem: cosmic rays diffuse

Galactic sources should accelerate to E_{knee} , probably via shock acceleration

 $E_{\text{knee}} \simeq 3 \text{ PeV}$:

either maximum energy of source or change in transport regime

 $\rightarrow E_{\text{max}} \gtrsim 3$ PeV for protons

Axford, Leer, Skadron (1977); Krymskii (1977); Bell (1978); Blandford, Ostriker (1978) Small energy gain ∆E, little particle loss ∆N

per cycle

$$
\begin{array}{c}\n\frac{\Delta E}{E} \propto \frac{U_{\rm sh}}{c} \\
\frac{\Delta N}{N} \propto \frac{U_{\rm sh}}{c}\n\end{array}\n\right\} \Rightarrow \frac{\mathrm{d}N}{\mathrm{d}E} \propto E^{-2}
$$

We do not understand how supernova remnants accelerate to E_{knee}

What is E_{max} ?

We do not understand how supernova remnants accelerate to E_{knee}

What is E_{max} ?

 \bullet Equate age with acceleration time: $U_{\rm sh}^2$ • Assume Bohm diffusion: $c\ell_{\sf mfp}$ $rac{\text{C}_{\text{mfp}}}{3} = \frac{\text{C}_{\text{fg}}}{3}$ $\frac{c}{3}r_{\rm g} = \frac{c}{3}$ 3 Emax qB ● Hillas-like relation: $\frac{U_{\rm sh}^2}{c} q B t_{\rm age}$ or $\frac{U_{\rm sh}}{c}$ $\frac{1}{c}$ qBR Diffusion coefficient Gyro radius

$$
\bullet\;\;{\rm With\; typical\; values:}\qquad \ \ U_{\sf sh}=10^4\,{\rm km\,s}^{-1}\,,\quad \ \ \mathcal{B}=1\,\mu{\rm G}\,,\quad \ \ t_{\sf age}=10^3\,{\rm yr}
$$

$$
\Rightarrow E_{\text{max,b}} \simeq 100 \, \text{TeV} \ll E_{\text{knee}}
$$

Lagage and Cesarsky (1983)

 $_{1}$ Choosing larger $t_{\rm age}$ does not help: $U_{\rm sh} \propto t_{\rm age}^{-3/5}$, so $E_{\rm max}$ decreases with time 2 Need to amplify B-field to $B \simeq 100 \,\mu$ G

Combining standard ingredients, we predict novel spectral features

The number of sources contributing to CR flux decreases with energy

 \bullet Residence time: $rac{z_{\text{max}}^2}{2\kappa}$ • Diffusion distance: $R = \sqrt{2\kappa t_{\rm esc}} = z_{\rm max}$ • Source density: $\nu t_{\rm esc}$ $\pi R_{\rm d}^2$ disk • Source number: $N_{\text{src}} = \sigma \pi R^2 = \nu t_{\text{esc}} \frac{z_{\text{max}}^2}{R_{\text{disk}}^2}$ With typical parameters (for details \rightarrow [Appendix](#page-58-0)): $\mathcal{R} = 10$ GV, 10 TV, 10 PV $N_{\text{src}} \simeq 2 \times 10^4$, 200, 4

Transport equation $\partial \psi$ $\frac{\partial \varphi}{\partial t} - \nabla \cdot \kappa \cdot \nabla \psi + \ldots = q$

Transport equation

$$
\frac{\partial \psi}{\partial t} - \mathbf{\nabla} \cdot \kappa \cdot \mathbf{\nabla} \psi + \ldots = q
$$

Transport equation

$$
\frac{\partial \psi}{\partial t} - \mathbf{\nabla} \cdot \kappa \cdot \mathbf{\nabla} \psi + \ldots = q
$$

$$
q = q(\mathbf{r}, t, E) = \sum_{i} \delta^{(3)}(\mathbf{r} - \mathbf{r}_i) \delta(t - t_i) Q(E)
$$

$$
\psi(\mathbf{r},t,E) = \int d^3\mathbf{r}' dt' \,\nu \,\rho(\mathbf{r}') G(\mathbf{r}-\mathbf{r}',t-t',E)
$$

 $q = q(r, t, E) = \nu \rho(r) Q(E)$

 $2z_{\text{max}}$

Stochastic nature of sources implies fluctuations in spectrum

• Solution:
$$
\psi(\mathbf{r},t,\rho)=\sum_i G(\mathbf{r}-\mathbf{r}_i,t-t_i,E)
$$

• \mathbf{r}_i , \mathbf{t}_i are random variables \Rightarrow $\psi(\mathbf{r}, t, p)$ is random variable

• Mean:
$$
\langle \psi(\mathbf{x}, t, \rho) \rangle = \int d^3 \mathbf{r}' dt' \nu \rho(\mathbf{r}') G(\mathbf{r} - \mathbf{r}', t - t', E)
$$

Can we use $\psi - \langle \psi \rangle$ to find sources?

Stochastic nature of sources implies fluctuations in spectrum

• Solution:
$$
\psi(\mathbf{r},t,\rho)=\sum_i G(\mathbf{r}-\mathbf{r}_i,t-t_i,E)
$$

•
$$
r_i
$$
, t_i are random variables $\Rightarrow \psi(\mathbf{r}, t, p)$ is random variable

• Mean:
$$
\langle \psi(\mathbf{x}, t, \rho) \rangle = \int d^3 \mathbf{r}' dt' \nu \rho(\mathbf{r}') G(\mathbf{r} - \mathbf{r}', t - t', E)
$$

Can we use $\psi - \langle \psi \rangle$ to find sources?

The number of sources contributing to CR flux decreases with sharply energy

 \bullet Residence time: E E˙ • Diffusion distance: $\sqrt{2\kappa t_{\mathsf{cool}}}$ • Source density: ν tcool $\pi R_{\rm disk}^2$ • Source number: $v^2 = \nu t_{\rm cool} \frac{2\kappa t_{\rm cool}}{R^2}$ R^2_{disk} With typical parameters (for details \rightarrow [Appendix](#page-58-0)): $\mathcal{R} = 10$ GV, 10 TV, 10 PV $N_{\rm src} \simeq 2 \times 10^4 \, , \; 1 \, , \; 10^{-4}$

Electrons and positrons at high energies

- Sensitivity to source distances and ages
- \rightarrow Need to consider when comparing to data
- \rightarrow Great potential for identifying sources

Mertsch (2018)

Monte Carlo study

- **1** Draw random distances $\{d_i\}$ and ages $\{t_i\}$
- 2 Add contributions from $i = 1, \ldots N_{\text{src}}$ sources in one realisation of the Galaxy
- **3** Repeat for different realisations of the Galaxy

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots \phi_N\}$
- Want multivariate distribution $p(\phi_1, \phi_2, \dots \phi_N)$
- \rightarrow Density estimation task

$$
p(\phi_1, \phi_2, \ldots \phi_N) = p(\phi_1)p(\phi_2|\phi_1) \ldots p(\phi_N|\phi_1, \ldots \phi_{N-1})
$$

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots \phi_N\}$
- Want multivariate distribution $p(\phi_1, \phi_2, \dots \phi_N)$
- \rightarrow Density estimation task

$$
p(\phi_1, \phi_2, \ldots \phi_N) = p(\phi_1)p(\phi_2|\phi_1) \ldots p(\phi_N|\phi_1, \ldots \phi_{N-1})
$$

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots \phi_N\}$
- Want multivariate distribution $p(\phi_1, \phi_2, \dots \phi_N)$
- \rightarrow Density estimation task

$$
p(\phi_1, \phi_2, \ldots \phi_N) = p(\phi_1)p(\phi_2|\phi_1) \ldots p(\phi_N|\phi_1, \ldots \phi_{N-1})
$$

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots \phi_N\}$
- Want multivariate distribution $p(\phi_1, \phi_2, \dots \phi_N)$
- \rightarrow Density estimation task

$$
p(\phi_1, \phi_2, \ldots \phi_N) = p(\phi_1) p(\phi_2 | \phi_1) \ldots p(\phi_N | \phi_1, \ldots \phi_{N-1})
$$

B-field amplification and CR escape

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current j

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current j

- CRs with gyroradius r_g tied to field lines
- \rightarrow Instability saturates once $\lambda \sim r_{\rm g}$
	- B-field density satisfies $\varepsilon_B \sim \frac{U_{\rm sh}}{C}$ $\frac{c}{c}$ _{CR}

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current j

- CRs with gyroradius r_g tied to field lines
- \rightarrow Instability saturates once $\lambda \sim r_{\rm g}$
	- B-field density satisfies $\varepsilon_B \sim \frac{U_{\rm sh}}{C}$ $\frac{c}{c}$ _{CR}

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current j

- CRs with gyroradius r_g tied to field lines
- \rightarrow Instability saturates once $\lambda \sim r_{\rm g}$
	- B-field density satisfies $\varepsilon_B \sim \frac{U_{\rm sh}}{C}$ $\frac{c}{c}$ _{CR}

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current j

- CRs with gyroradius r_g tied to field lines
- \rightarrow Instability saturates once $\lambda \sim r_{\rm g}$
	- B-field density satisfies $\varepsilon_B \sim \frac{U_{\rm sh}}{C}$ $\frac{c}{c}$ _{CR}

Bell instability makes optimal use of $\mathbf{j} \times \mathbf{B}$ force

• Growth rate:

Slide concept: T. Bell

 \int j B k $\frac{Bk}{\rho}$ or $\frac{\gamma^2}{k}$ $\frac{1}{k}$ \sim jB ρ Wave number

• Compare to acceleration of fluid element of size $z \sim 1/k$ in time $t \sim 1/\gamma$:

$$
\frac{z}{t^2} \sim \frac{1}{\rho} |\mathbf{j} \times \mathbf{B}| \lesssim \frac{jB}{\rho} \qquad \rightarrow \qquad \frac{\gamma^2}{k} \lesssim \frac{jB}{\rho}
$$

Bell instability makes optimal use of $\mathbf{i} \times \mathbf{B}$ force

Slide concept: T. Bell

- Growth rate:
- Compare to acceleration of fluid element of size $z \sim 1/k$ in time $t \sim 1/\gamma$:

 \int j B k

$$
\frac{z}{t^2} \sim \frac{1}{\rho} |\mathbf{j} \times \mathbf{B}| \lesssim \frac{jB}{\rho} \qquad \rightarrow \qquad \frac{\gamma^2}{k} \lesssim \frac{jB}{\rho}
$$

 $\frac{Bk}{\rho}$ or $\frac{\gamma^2}{k}$

 $\frac{1}{k}$ \sim jB ρ

Wave number

Grows rapidly on small scales

The highest CR energies can be achieved at start of Sedov-Taylor phase

- Shock speed $U_{\rm sh}$ enters into growth rate γ through escape current j
- Saturation field $B \propto U_{\rm sh}^{3/2}$
- $U_{\rm sh} \propto t_{\rm age}^{-3/5}$
- $\rightarrow E_{\sf max} \propto U_{\sf sh}^2 B t_{\sf age} \propto t_{\sf age}^{-11/10}$

also Gabici, Aharonian, Casanova (2009); Caprioli, Blasi, Amato (2010); Blasi and Amato (2012); Thoudam and Hörandel (2012)

- E_{max} decreases with time
- At any one time t, particles of energy $E_{\text{max}}(t)$ escape
- Ultimately, all particles with $E < E_{\text{max,b}}$ escape

also Gabici, Aharonian, Casanova (2009); Caprioli, Blasi, Amato (2010); Blasi and Amato (2012); Thoudam and Hörandel (2012)

- E_{max} decreases with time
- At any one time t, particles of energy $E_{\text{max}}(t)$ escape
- Ultimately, all particles with $E < E_{\text{max,b}}$ escape

Cosmic-Ray Energy-Dependent Injection Time (CREDIT) scenario

The Green's function has narrow spectral features

$$
\frac{\partial G}{\partial t} - \mathbf{\nabla} \cdot \kappa \cdot \mathbf{\nabla} G = \delta^{(3)}(\mathbf{r} - \mathbf{r}_i) \delta(t - t_i - t_{\text{esc}}(E)) Q(E)
$$

The Green's function has narrow spectral features

∂G

$$
\frac{\partial G}{\partial t} - \nabla \cdot \kappa \cdot \nabla G = \delta^{(3)}(\mathbf{r} - \mathbf{r}_i) \delta(t - t_i - t_{\rm esc}(E)) Q(E)
$$

The Green's function has narrow spectral features

∂G

$$
\frac{\partial G}{\partial t} - \nabla \cdot \kappa \cdot \nabla G = \delta^{(3)}(\mathbf{r} - \mathbf{r}_i) \delta(t - t_i - t_{\rm esc}(E)) Q(E)
$$

CREDIT scenario predicts dramatic spectral features

Stall, Loo, Mertsch, arXiv:2409.11012

CREDIT scenario predicts dramatic spectral features

Stall, Loo, Mertsch, arXiv:2409.11012

Modern proton data offer unprecedented accuracy

V. Choutko (2015), An et al. (2019), Aguilar et al. (2020),

AMS-02

DAMPE

Statistical errors are much smaller than CREDIT features

Stall, Loo, Mertsch, arXiv:2409.11012

We can confidently discriminate between the different scenarios

Stall, Loo, Mertsch, arXiv:2409.11012

Can discriminate features from statistical fluctuations?

 \rightarrow Classical machine learning task

Decision tree

We can confidently discriminate between the different scenarios

Stall, Loo, Mertsch, arXiv:2409.11012

Can discriminate features from statistical fluctuations?

 \rightarrow Classical machine learning task

Decision tree

The classification is very robust

Stall, Loo, Mertsch, arXiv:2409.11012

The classification is very robust

Stall, Loo, Mertsch, arXiv:2409.11012

Accuracy virtually unchanged

The results are going to be interesting either way

Classifier finds . . .

- 1. CREDIT scenario
- \rightarrow Investigate sources

The results are going to be interesting either way

Classifier finds . . .

- 1. CREDIT scenario
- \rightarrow Investigate sources

2. Burst-like scenario $(E_{\text{max,b}} \rightarrow \infty)$

 \rightarrow Constraints on acceleration models

upstream rest frame

downstream rest frame

The results are going to be interesting either way

Classifier finds . . .

- 1. CREDIT scenario
- \rightarrow Investigate sources

2. Burst-like scenario $(E_{\text{max,b}} \rightarrow \infty)$

 \rightarrow Constraints on acceleration models

 $\overline{\text{upstream}}$ rest frame

downstream rest frame

3. Smooth scenario

 \rightarrow Trouble for supernova remnant paradigm

Summary & Conclusion

Time scales

Time scales:

• $t_{\text{diff}} = \frac{z_{\text{max}}^2}{2\kappa}$ with $z_{\text{max}} = 5$ kpc, $\kappa(10\,\text{GV}) = 5\times 10^{28} \text{cm}^2\,\text{s}^{-1}$

- t_{cool} : KN cross-section with $\rho = \{0.26, 0.6, 0.6, 0.1\}$ eV cm⁻³ for CMB, IR, opt, UV; 3μ G B-field
- t_{ion} : $n_{\text{H}} = 0.5 \text{ cm}^{-3}$ (WIM) and $n_{\rm H} = 0.5$ cm $^{-3}$ (WNM) and 100 pc wide gas disk

In a diffusion model with $E^{-\Gamma}$ sources in disk:

- \bullet $\phi(E) \propto E^{-\Gamma-\delta}$ if diffusion dominated
- \bullet $\phi(E) \propto E^{-\Gamma (\delta+1)/2}$ if cooling dominated

GeV vs MeV

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

(diffusion-loss length) \gg (average source separation)

⇒ little fluctuation ⇒ smooth approximation is good (diffusion-loss length) \ll (average source separation)

⇒ sizeable fluctuations ⇒ smooth approximation is bad

 10^{10}

Cosmic ray flux is a stochastic quantity

Results: protons & electrons

Phan, Schulze, Mertsch, Recchia, Gabici (2021)

- Voyager 1 data inside uncertainty band
- \rightarrow Source discreteness effects important

Result $# 1$

 \rightarrow No need for unmotivated break in source spectrum!

The ionisation puzzle

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

The ionisation puzzle

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Result $# 2$

• Local ISM: improvement, but still too low

The ionisation puzzle

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Result $# 2$

- Local ISM: improvement, but still too low
- Spiral Arm: systematic shift up