The Unexpected TeV Emitters in the Galactic Plane

Ke Fang University of Wisconsin-Madison

> Sugar 2024, Madison, WI October16, 2024

- The sky viewed with 100 TeV photons
- Gamma-ray-obscured sources

The sky viewed with 100 TeV photons

Gamma-ray-obscured sources

The PeVatron

From P. Blasi's talk:

Definition of a PeVatron: "A PeVatron is a source that is able to accelerate particles with a spectrum that shows a substantial suppression with respect to its low energy power law extrapolation in the region of PeV energies"

The PeVatron

From P. Blasi's talk:

Definition of a PeVatron: "A PeVatron is a source that is able to accelerate particles with a spectrum that shows a substantial suppression with respect to its low energy power law extrapolation in the region of PeV energies"

Strictly: a PeVatron is an object that accelerates protons to the PeV range with a hard (slope ~ 2) spectrum

The PeVatron

From P. Blasi's talk:

Definition of a PeVatron: "A PeVatron is a source that is able to accelerate particles with a spectrum that shows a substantial suppression with respect to its low energy power law extrapolation in the region of PeV energies"

Strictly: a PeVatron is an object that accelerates protons to the PeV range with a hard (slope ~ 2) spectrum

Broadly: an object that accelerates either leptons or hadrons to the PeV range

PeVatron in 2016

 $\frac{6}{\sqrt{TS}}$

0.1-100 TeV sky by HAWC

PeVatron in 2016

0.1-100 TeV sky by HAWC

0.1-100 TeV sky by HAWC

8 12 $\frac{6}{\sqrt{TS}}$ 2 10 14 4 *incomplete list. Also see <u>TeVCat</u>

Cygnus Cocoon

360°

``

0.1-100 TeV sky by HAWC

12 8 $\frac{6}{\sqrt{TS}}$ 2 10 14 4 *incomplete list. Also see <u>TeVCat</u>

Cygnus Cocoon

 360°

**

-5° 5°

÷.

4

2

0.1-100 TeV sky by HAWC

1

5° ∕-5°

Cygnus Cocoon

-2 -0

0.1-100 TeV sky by HAWC

÷.

4

2

1

5° ∕-5°

Cygnus Cocoon

0.1-100 TeV sky by HAWC

-5° 5

2

4

1

5°/-5°

Cygnus Cocoon

360°

``

0.1-100 TeV sky by HAWC

12 8 $\frac{6}{\sqrt{TS}}$ 2 10 14 4 *incomplete list. Also see <u>TeVCat</u>

HAWC ApJL (2024)

HAWC ApJL (2024)

H.E.S.S. Nature (2016)

HAWC ApJL (2024)

• Electron cooling time $\approx 13 (E/100 \,\text{TeV})^{-1} \,\text{yr} = 4 \,\text{pc}$, too short to populate the 10-100 pc emission region

• The detection of emission to energies >100 TeV thus strongly disfavors the leptonic scenario

IR

IR

0.1-100 GeV

IR

0.1-100 GeV

1-100 TeV

IR

• Gamma-rays from 0.1 GeV to 100 TeV trace infrared emission, likely from proton gas interaction

0.1-100 GeV

1-100 TeV

 Gamma rays are likely from protons accelerated by stellar winds

 Gamma rays are likely from protons accelerated by stellar winds

- Gamma rays are likely from protons accelerated by stellar winds
- Continuous injection scenario: steady injection of **sub-PeV** protons to the cocoon over Myrs

- Gamma rays are likely from protons accelerated by stellar winds
- Continuous injection scenario: steady injection of **sub-PeV** protons to the cocoon over Myrs

- Gamma rays are likely from protons accelerated by stellar winds
- Continuous injection scenario: steady injection of **sub-PeV** protons to the cocoon over Myrs
- Recent burst scenario: a recent injection of > **PeV** protons; spectral turnover due to leak of high-energy particles

-1- Φ_{γ} [TeV cm⁻² s⁻¹

LHAASO Collaboration, Science Bulletin (2024) **KF** & Halzen, 2404.15944

-1] Ś Φ_{γ} [TeV cm⁻²

LHAASO Collaboration, Science Bulletin (2024) **KF** & Halzen, 2404.15944

0.1-1 PeV gamma-ray observation indicates a "super-PeVatron"

0.1-1 PeV gamma-ray observation indicates a "super-PeVatron"

- 0.1-1 PeV gamma-ray observation indicates a "super-PeVatron"
- Plausible neutrino source

Cygnus Cocoon: Leptonic Emission?

- Constrained X-ray emission by relativistic electrons

• X-ray follow-up with Swift-XRT (110 ks observations of 11 sites inside and around the Cocoon)

Swift Guest Investigator Program Cycle 17 Guevel et al, *ApJ* 2211.07617

Cygnus Cocoon: Leptonic Emission?

- Constrained X-ray emission by relativistic electrons

• X-ray follow-up with Swift-XRT (110 ks observations of 11 sites inside and around the Cocoon)

Swift Guest Investigator Program Cycle 17 Guevel et al, *ApJ* 2211.07617

PeVatron Zoo* in 2024

8

12

14

10

0.1-100 TeV sky by HAWC

 $\dot{2}$

 $\frac{6}{\sqrt{TS}}$

4

- Gamma-ray emitting site closes to a molecular cloud

• Observed in radio, X-ray, and TeV gamma-ray (VERITAS, HAWC, Tibet, LHAASO)

Significa

- Gamma-ray emitting site closes to a molecular cloud
- Gamma-ray spectrum may be explained by either proton or electron emission

1-100 TeV Tibet ASγ Coll. *Nature Astro.* (2021)

2-10 keV

Significance (*σ*) 0 338 336 Right ascension (deg)

• Observed in radio, X-ray, and TeV gamma-ray (VERITAS, HAWC, Tibet, LHAASO)

• Emission above 10 GeV is observed, consistent with TeV measurements; no emission found below 10 GeV

- Emission above 10 GeV is observed, consistent with TeV measurements; no emission found below 10 GeV
- Model with proton contribution is favored at >5 σ significance

Electron + Proton

Best-fit proton maximum energy = 0.9 PeV

- Emission above 10 GeV is observed, consistent with TeV measurements; no emission found below 10 GeV
- Model with proton contribution is favored at >5 σ significance

first PeVatron SNR candidate; very hard proton spectrum

Electron + Proton

Best-fit proton maximum energy = 0.9 PeV

PeVatron Zoo* in 2024

0.1-100 TeV sky by HAWC

 $\frac{6}{\sqrt{TS}}$ *incomplete list. Also see TeVCat

Safi-Harb et al with KF, ApJ (2022)

HAWC Collaboration, Nature (2018) **KF** as main author

 Point-like TeV gamma-rays in both lobes detected by HAWC

> HAWC Collaboration, Nature (2018) **KF** as main author

ROSAT 0.2 keV HAWC ~20 TeV

 Point-like TeV gamma-rays in both lobes detected by HAWC

ROSAT 0.2 keV HAWC ~20 TeV

 Point-like TeV gamma-rays in both lobes detected by HAWC

> • Particle acceleration sites ~30 pc away from hole

HAWC Collaboration, Nature (2018) **KF** as main author

SS 433 jets

SS 433 jets

SS 433 jets

GeV-to-TeV Gamma-ray emission can be explained by inverse Compton emission by relativistic electrons that cool efficiently

GeV-to-TeV Gamma-ray emission can be explained by inverse Compton emission by relativistic electrons that cool efficiently

Not a hadronic PeVatron, but shows jets accelerating 100 TeV electrons

SS 433 / W50: H.E.S.S. results

H.E.S.S. Collaboration, *Science* (2024)

SS 433 / W50: H.E.S.S. results

- Gamma-ray emission sites vary slightly in energy bands
- Explained as shock velocity changes

H.E.S.S. Collaboration, *Science* (2024)

HAWC Collaboration (**KF** as corresponding author), *ApJ (2024)*

• SS 433 observed with a systematic analysis approach, confirming 2018 results

HAWC Collaboration (**KF** as corresponding author), *ApJ (2024)*

• Need new models to fit the data!

- Need new models to fit the data!
- HAWC and H.E.S.S. data above 10 TeV could indicate a failure of one-zone leptonic models

- Need new models to fit the data!
- HAWC and H.E.S.S. data above 10 TeV could indicate a failure of one-zone leptonic models
- Also suggested by LHAASO observation above 100 TeV

• X-ray binary with a 3-10 solar mass black hole. Super-Eddington flares in radio and likely X-ray

https://doi.org/10.1038/s41586-024-07995-9

• X-ray binary with a 3-10 solar mass black hole. Super-Eddington flares in radio and likely X-ray Elongated emission extends to > 100 TeV

https://doi.org/10.1038/s41586-024-07995-9

• X-ray binary with a 3-10 solar mass black hole. Super-Eddington flares in radio and likely X-ray Elongated emission extends to > 100 TeV Observation consistent with Jet size

 $R \sim (L_{\text{jet}}/n_0 m_p)^{1/5} t^{3/5} \sim 100 \,\text{pc}$

https://doi.org/10.1038/s41586-024-07995-9

• X-ray binary with a 3-10 solar mass black hole. Super-Eddington flares in radio and likely X-ray Elongated emission extends to > 100 TeV Observation consistent with Jet size

 $R \sim (L_{\text{jet}}/n_0 m_p)^{1/5} t^{3/5} \sim 100 \,\text{pc}$

 Adds to SS 433 as the second Galactic microquasar with large-scale jets

V4641 Sagittarii: PeVatron perspective

HAWC Collaboration, Nature (2024)

. $dN/dE_{\gamma} \propto E_{\gamma}^{-2.2}$. Among the **hardest source** ever detected by air shower gamma-ray observatories

. $dN/dE_{\gamma} \propto E_{\gamma}^{-2.2}$. Among the **hardest source** ever detected by air shower gamma-ray observatories

- . $dN/dE_{\gamma} \propto E_{\gamma}^{-2.2}$. Among the **hardest source** ever detected by air shower gamma-ray observatories
- pp interaction may explain the emission with $L_p \ll L_{\rm Edd}$

- . $dN/dE_{\gamma} \propto E_{\gamma}^{-2.2}$. Among the **hardest source** ever detected by air shower gamma-ray observatories
- pp interaction may explain the emission with $L_p \ll L_{\rm Edd}$

- . $dN/dE_{\gamma} \propto E_{\gamma}^{-2.2}$. Among the **hardest source** ever detected by air shower gamma-ray observatories
- pp interaction may explain the emission with $L_p \ll L_{\rm Edd}$
- A leptonic scenario is challenging as 100 TeV electrons can hardly diffuse over 100 pc. It also requires fast acceleration

V4641 Sagittarii: H.E.S.S. followup

- Seen by H.E.S.S. with ~115 hours of total observation time
- Harder spectrum (<2)
- Detected up to 800 TeV by LHAASO
- More multi-wavelength/multi-messenger followup coming

Olivera-Nieto Gamma2024

V4641 Sagittarii: H.E.S.S. followup

- Seen by H.E.S.S. with ~115 hours of total observation time
- Harder spectrum (<2)
- Detected up to 800 TeV by LHAASO
- More multi-wavelength/multi-messenger followup coming

Olivera-Nieto Gamma2024

- Shock acceleration in regions where jets passing pre-existing clumps?
- Reconnection in jets?

Cavity in jets?

PeVatron Zoo* in 2024

Cygnus Cocoon

0.1-100 TeV sky by HAWC

-5° 5

2

4

1

5°/-5°

PeVatron Zoo* in 2024

Cygnus Cocoon

New source classes + expected source class but unexpected look at **TeV-PeV**

Galactic center PeVatron

-5 5

2

PeVatron Zoo* in 2024: Neutrino efforts

Diffuse Galactic plane analyses	Flux sensitivity Φ	p-value	Best-fitting flux Φ
π^0	5.98	$1.26 \times 10^{-6} (4.71\sigma)$	$21.8 \ ^{+5.3}_{-4.9}$
${ m KRA}^5_\gamma$	$0.16 \times MF$	6.13×10^{-6} (4.37 σ)	$0.55^{+0.18}_{-0.15} imes \mathrm{MF}$
$\mathbf{KRA}_{\gamma}^{50}$	$0.11 \times MF$	$3.72 \times 10^{-5} (3.96\sigma)$	$0.37^{+0.13}_{-0.11} imes \mathrm{MF}$
Catalog stacking	p-value		
analyses			
SNR		$5.90 \times 10^{-4} (3.24\sigma)^*$	
PWN		$5.93 \times 10^{-4} (3.24\sigma)^*$	
UNID		$3.39 \times 10^{-4} (3.40\sigma)^*$	

IceCube Collaboration, Science (2023)

KF & Halzen, 2404.15944

PeVatron Zoo* in 2024: Neutrino efforts

Diffuse Galactic plane analyses	Flux sensitivity Φ	p-value	Best-fitting flux Φ
π^0	5.98	$1.26 \times 10^{-6} (4.71\sigma)$	$21.8 \ ^{+5.3}_{-4.9}$
${ m KRA}^5_\gamma$	$0.16 \times MF$	6.13×10^{-6} (4.37 σ)	$0.55^{+0.18}_{-0.15} imes \mathrm{MF}$
$\mathbf{KRA}_{\gamma}^{50}$	$0.11 \times MF$	$3.72 \times 10^{-5} (3.96\sigma)$	$0.37^{+0.13}_{-0.11} imes \mathrm{MF}$
Catalog stacking	p-value		
analyses			
SNR		$5.90 \times 10^{-4} (3.24\sigma)^*$	
PWN		$5.93 \times 10^{-4} (3.24\sigma)^*$	
UNID		$3.39 \times 10^{-4} (3.40\sigma)^*$	

IceCube Collaboration, *Science* (2023)

- Enhanced data & selection
 - New event selection in the Southern sky (<u>ESTES</u>)
 - Multi-flavor combined sample
- Various source classes:
 - XRBs (7.5 years of tracks)
 - PWNe (<u>9.5 years of point-source data</u>)
 - LHAASO UHE sources (<u>11 yr tracks</u>)
 - Extended gamma-ray sources (<u>10 yr tracks</u>)
- Joint search in gamma-ray data
 - IceCube & HAWC

KF & Halzen, 2404.15944

• The sky viewed with 100 TeV photons

Gamma-ray-obscured sources

Extragalactic neutrino sources are likely gamma-ray-opaque!

Diffuse Emission

Murase, Guetta, Ahlers PRL (2016) <u>Capanema et al PRD (2020)</u>, <u>JCAP (2021)</u> KF, Gallagher, Halzen, ApJ (2022)

Extragalactic neutrino sources are likely gamma-ray-opaque!

Diffuse Emission

Murase, Guetta, Ahlers PRL (2016) Capanema et al PRD (2020), JCAP (2021) KF, Gallagher, Halzen, ApJ (2022)

TeV to PeV multi-messenger emission by the Galactic Plane

 $\nu \gamma$

TeV to PeV multi-messenger emission by the Galactic Plane

What does the neutrino Galactic plane flux imply for Galactic PeVatrons?

KF & Murase *ApJ* (2021)

KF & Murase *ApJ* (2021)

KF & Murase *ApJ* (2021)

KF & Murase *ApJ* (2021)

KF & Murase *ApJ* (2021)

KF & Murase *ApJ* (2021) KF & Murase ApJL (2023)

Above ~30 TeV, gamma-ray emission is dominated by hadronic process and/or there exists a population of gamma-ray-obscured neutrino emitters

KF & Murase *ApJ* (2021) KF & Murase ApJL (2023)

$$\mathscr{C} = \frac{L_X}{R} \frac{\sigma_T}{m_e c^3}$$

$$\mathscr{C} = \frac{L_X}{R} \frac{\sigma_T}{m_e c^3}$$

$$\ell = \frac{L_X}{R} \frac{\sigma_T}{m_e c^3}$$

Acceleration $\sigma_{\pm} = \frac{B^2}{4\pi n_e m_e c^2} = \frac{\xi_B}{2\pi \tau_T} \ell \qquad n_e \approx \tau_T / \sigma_T R$

$$u_B = \xi_B \, u_X$$

$$\mathscr{C} = \frac{L_X}{R} \frac{\sigma_T}{m_e c^3}$$

Acceleration

$$\sigma_{\pm} = \frac{B^2}{4\pi n_e m_e c^2}$$

Interaction

$$au_{p\gamma} \propto rac{m_e c^2}{\epsilon_X} rac{\sigma_{p\gamma}}{\sigma_T} \ell$$

$$au_{pp} \propto rac{n_p}{n_e} rac{\sigma_{pp}}{\sigma_T} au_T$$

Acceleration
$$\sigma_{\pm} = \frac{B^2}{4\pi n_e m_e c}$$

Interaction

$$au_{p\gamma} \propto rac{m_e c^2}{\epsilon_X} rac{\sigma_{p\gamma}}{\sigma_T} \ell$$

 $\tau_{pp} \propto \frac{n_p}{n_e} \frac{\sigma_{pp}}{\sigma_T} \tau_T$

the X-ray source

• Particle acceleration and interaction timescales in the coronal region are tied to the compactness of

$$\mathscr{C} = \frac{L_X}{R} \frac{\sigma_T}{m_e c^3}$$

Acceleration
$$\sigma_{\pm} = \frac{B^2}{4\pi n_e m_e c}$$

$$au_{p\gamma} \propto rac{m_e c^2}{\epsilon_X} rac{\sigma_{p\gamma}}{\sigma_T}$$

 $\tau_{pp} \propto \frac{n_p}{n_e} \frac{\sigma_{pp}}{\sigma_T} \tau_T$

the X-ray source

Interaction

black hole XRBs, despite of their drastically different masses and physical sizes.

• Particle acceleration and interaction timescales in the coronal region are tied to the compactness of

Neutrino emission processes may similarly happen in the cores of active galactic nuclei and

Krawczynski et al Science (2022)

Krawczynski et al Science (2022)

Krawczynski et al Science (2022)

Hard and soft states

Krawczynski et al Science (2022)

Hard and soft states

Krawczynski et al Science (2022)

- Hard and soft states
- Transition of states due to different accretion states. In hard/soft state, coronal emission dominates at large/small radius

- Hard and soft states
- Transition of states due to different accretion states. In hard/soft state, coronal emission dominates at large/small radius

- Hard and soft states
- Transition of states due to different accretion states. In hard/soft state, coronal emission dominates at large/small radius
- Hard X-ray to MeV gamma-ray emission associated with corona

- Hard and soft states
- Transition of states due to different accretion states. In hard/soft state, coronal emission dominates at large/small radius
- Hard X-ray to MeV gamma-ray emission associated with corona

- Hard and soft states
- Transition of states due to different accretion states. In hard/soft state, coronal emission dominates at large/small radius
- Hard X-ray to MeV gamma-ray emission associated with corona
- 1-100 GeV emission only in hard state; sub-GeV emission seen in both states. Origin unknown

- Hard state: $R \sim 100 R_g$, $\ell \sim 2$, $\sigma_{\pm} \sim 0.1$, turbulent acceleration
- . Soft state: $R \sim 30 R_g$, $\ell \sim 20$, $\sigma_{\pm} \sim 60$, magnetic reconnection

. In both states, coronal region is **opaque to gamma rays**. Soft state has $\tau_{\gamma\gamma} \gg 1$

- Hard state: $R \sim 100 R_g$, $\ell \sim 2$, $\sigma_{\pm} \sim 0.1$, turbulent acceleration
- Soft state: $R \sim 30 R_g$, $\ell \sim 20$, $\sigma_{\pm} \sim 60$, magnetic reconnection

 \mathcal{N}

. In both states, coronal region is **opaque to gamma rays**. Soft state has $\tau_{\gamma\gamma} \gg 1$

- *v* emission detectable with future observations

• Hadronic γ rays cascade down to sub-GeV energies in soft state and 0.1-100 GeV in hard state

- *v* emission detectable with future observations
- State-averaged γ -ray flux is consistent with TeV limits and LHAASO observation

• Hadronic γ rays cascade down to sub-GeV energies in soft state and 0.1-100 GeV in hard state

- *v* emission detectable with future observations
- . State-averaged γ -ray flux is consistent with TeV limits and LHAASO observation
- Galactic XRB coronal emission could explain both Galactic cosmic-ray and neutrino flux

• Hadronic γ rays cascade down to sub-GeV energies in soft state and 0.1-100 GeV in hard state

36

its individual sources and diffuse emission

Recent gamma-ray observations reveal new looks of the Milky Way, including

its individual sources and diffuse emission

Recent gamma-ray observations reveal new looks of the Milky Way, including

- its individual sources and diffuse emission
- of hadronic sources

Recent gamma-ray observations reveal new looks of the Milky Way, including

The Galactic plane emission observed by IceCube indicates a large population

- its individual sources and diffuse emission
- of hadronic sources

Recent gamma-ray observations reveal new looks of the Milky Way, including

The Galactic plane emission observed by IceCube indicates a large population

- Recent gamma-ray observations reveal new looks of the Milky Way, including its individual sources and diffuse emission
- The Galactic plane emission observed by IceCube indicates a large population of hadronic sources
- X-ray binary coronae, like their extragalactic big brothers, may work as gammaray-opaque neutrino emitters

