SuGAR, Madison WI October 16, 2024

Are SNRs Cosmic Ray Factories? Yes, but...

Damiano Caprioli **University of Chicago**

with B. Schroer, E. Simon, G. Zacharegkas (UChicago), C. Haggerty (UHawai'i), R. Diesing (IAS Princeton), P. Blasi (GSSI)

The SNR paradigm for the origin of CRs

Mechanism: Fermi acceleration at SNR shocks is *first-order* and produces powerlaws. Diffusive Shock Acceleration (DSA) (Krimskii77,Axford+78,Bell78,Blandford-Ostriker78)

Evidence of B field amplification: selfgenerated scattering enhances the energization rate (e.g., Bamba+05, Völk+05, Parizot+06, Morlino+12, Ressler+14, etc)

Reaching the knee depends on the properties of CR-driven instabilities (e.g., Bell+13, Cardillo+15, Cristofari+21,22, ...)

Downstream

Upstream

B-Amplification in Shocks

CALLENGE WAR AND AND THE CONSTRUCTION OF THE STATE OF THE

A Multi-scale Approach

Meso

Macro

Astro

PIC Plasma Simulations electron + ion dynamics

Hybrid: ion dynamics, magnetic field amplification

Super-Hybrid (MHD+hybrid) Large/long scales High-Mach numbers

> Semi-Analytical CRAFT = Cosmic Ray Analytical Fast Tool

Astroplasmas from first principles

Full-PIC approach Define electromagnetic fields on a grid Move particles via Lorentz force Second Evolve fields via Maxwell equations B Computationally very challenging!

Hybrid approach: Fluid electrons - Kinetic protons (Winske & Omidi; Burgess et al., Lipatov 2002; Giacalone et al. 1993,1997,2004-2013; DC & Spitkovsky 2013-2015, Haggerty & DC 2019-2022)

massless electrons for more macroscopical time/length scales

B

Magnetic-Field Amplification in Shocks

 $x[c/\omega_p]$

Initial B field $M_s = M_A = 30$

DC & Spitkovsky, 2014

6

Which Instability is at Work?

B energy density per unit logarithmic band-width, F(k)

So Far upstream: Escaping CRs at p_{max}

Free escape boundary

Precursor: Current in diffusing CRs

 $\odot E_{max}$ in a SNR depends on

Current in escaping particles

B-field at saturation

Bell+13: Time needed for saturation may become comparable to the SNR age

$$E_{max} = 230 \ \eta_{0.03} n_e^{1/2} u_7^2 R_{pc} \ \text{TeV}$$

Hard time reaching the CR knee ~ PeV!

A Simple Question

Thermodynamical" argument: if $P_{cr} > P_{B}$, CRs must amplify the field. Given a generic distribution, e.g., n_{cr} CRs of isotropic momentum p_{iso} drifting with momentum p_d , how much B-field can be produced?

CR current and energy density: $J_{\rm cr} = e n_{\rm cr} v_d$ $\varepsilon_{\rm cr} \simeq n_{\rm cr} c \max\{p_{\rm iso}, p_{\rm d}\}$

What is the value of $\delta B/B_0(J_{cr}, \varepsilon_{cr})$ at saturation?

Maybe a Not-so-simple Question?

Oppending on the CR parameters, the: filamentation, Weibel, (modified) two-stream, Buneman, resonant, "interm-scale", Bell, ... instability may grow the fastest (e.g., Bret 2009) Caveat: fastest growing doesn't imply most important for saturation! 0 Most important regime for CR acceleration (e.g., SNRs): Bell instability (Bell04, Amato+09) Introducing the parameter E $\xi \equiv \frac{1}{2} \frac{\varepsilon_{\rm cr}}{\varepsilon_{\rm R}} \frac{v_{\rm d}}{c}$ Bell: $\delta B/B_0 \sim \sqrt{\xi} \gg 1$ Two-stream: (e.g., Reville+08,13; Riquelme+09; Bell dominates if $\xi \gg 1$ and: Gargaté+10, Zacharegkas+22) $\delta B/B_0 \gtrsim 1$ (e.g., Niemiec+08, $\gamma_{\rm max} =$ Zacharegkas+21, $k_{\max}r_I \simeq \xi;$ Lichko, DC+, in resonant: $\delta B/B_0 \lesssim 1$ prog.) (e.g., Holcomb+18, Bai+19, Haggerty+21) Bell's ansatz: $[k_{\max}r_L]_{\delta B} \sim 1 \rightarrow \frac{\delta B}{B_0} \sim \sqrt{\xi}$

 $2en_g v_A$

The Saturation of the Bell Instability

WINDLING TO STATE TO

Probing the Ansatz

 Bell's ansatz (also see Blasi+15), has never been validated by self-consistent kinetic simulations (though see, e.g., Bell 05, Zirakashvili+07, Niemiec+08, Ohira+09, Riquelme+09, Gargaté+10, Reville+13, Kobzar+17, Haggerty+19, Marret+21, Gupta+21, Zacharegkas+19,21...) • What is the physical meaning of $\xi \equiv \frac{1}{2} \frac{\varepsilon_{\rm cr}}{\varepsilon_{\rm r}} \frac{v_{\rm d}}{\varepsilon_{\rm cr}}$? p_\perp Only similar to a ratio of CR to magnetic energy fluxes! Hot. Drifting $p_{
m iso}$ $p_{
m iso}$ Our Derived for a hot distribution of relativistic CRs p_d What is its general formula? Seed to introduce the relativistic stress tensor $T^{\mu\nu} = (e_{cr} + p_{cr})u_d^{\mu}u_d^{\nu} + p\eta^{\mu\nu}$ and p_{iso}), and then boosted with a drift four-velocity $u_d = (\gamma_d c, p_d/m)$

The Magic of B Saturation

PHYSICS AND MAGIC ARE DIFFERENT IN A VERY DEEP WAY.

PHYSICS WORKS BY DESCRIBING THE FORCES THAT ACT ON A SYSTEM. TO PREDICT OUTCOMES, WE PROGRESSIVELY APPLY THOSE FORCES OVER TIME.

bT₃

MAGIC SPECIFIES THE OUTCOME, BUT NOT THE INTERMEDIATE EVENTS. "ERE THE CLOCK STRIKES TWELVE, YOU ARE CURSED TO SLAY YOUR BROTHER" IS MAGIC, NOT SCIENCE.

https://www.xkcd.com/2904/

Controlled Simulations of CR-driven Instabilities

Hybrid sims in periodic boxes in the Bell regime (e.g., Haggerty, Zweibel & Caprioli 2019) House the second s

Note the

driven by leptons! Haggerty 2021)

After the linear stage, power moves at larger and larger scales • At saturation $\delta B/B_0 \gg 1$: magnetic pressure ~ gas pressure ~ initial CR pressure

An Extensive Survey

Tens of (un-)driven runs exploring hot/cold cases, (non-)relativistic, values of ξ , ... The quantity that best expresses B at saturation is:

 $\xi_{\rm new} = kinetic$ energy density, or

anisotropic momentum flux,

At saturation, $\frac{\delta B}{\Gamma}$

Comparison with Bell's ansatz

Simulations suggest that saturation may be smaller than the one predicted by Bell, since

Though dynamo effects in the precursor may be important: Beresnyak+09, Drury & Downes 12, Downes & Drury 2014

Does this make it harder for SNRs (v_d ~ v_{sh}) to reach the knee? (Bell+13, Cardillo+15, Cristofari+20,22,...)
In shocks, amplification happens
far upstream: because of escaping CRs (cold beam, v_d ~ c)
in the precursor: because of diffusing CRs (hot distribution)
Most of the amplification must be driven by escaping CRs!

Bell Instability and CR Transport

The Berger States and the second and the

Evidence of CR "Spheres of Influence"

TeV haloes 50-100 pc wide are ubiquitous around CR sources. Why? They require a diffusion coefficient ~100x smaller than the Galactic one

Pulsar Wind Nebulae (PWNe)

Stellar Clusters

Geminga

Cygnus Loop

18

CR Self-confinement

Gradients in CR distributions generate currents, and hence B amplification Analytical calculations (e.g., Gabici+09, Fujita+11, Malkov+13, Nava+16, 19, etc...) Brunetti+07,Wiener+13), and 1D escape along a flux tube

- Assume: resonant streaming instability (Kulsrud+69, Zweibel79) balanced by some damping (e.g.,

The flux tube may expand sideways due to the CR overpressure: bubbles?

19

Global Hybrid Simulations of CR Escape

Schroer, DC+2021

tΩ= 1620

Implications

Size of "spheres of influence" ~50-100pc (Schroer, DC+2021, 2022)

CR diffusion is reduced in such bubbles A factor of ~100 is reasonable and consistent with TeV haloes Possible modifications to secondary/primary yield and spectra (e.g., B/C, \bar{p}/p ,...) The dynamical role of CRs in galaxy evolution needs to be re-evaluated 21

How to Model Astro Sources

PERECUAL DAR SUSTICES TO PERO SA PERCENTICE STRATE STRATE STRATE STRATE CONTRACTOR OF RECONNERS STRATES STRATE STRATE STRATES

Warder warder

CRAFT: a Cosmic-Ray Fast Analytic Tool

$$\tilde{u}(x)\frac{\partial f(x,p)}{\partial x} = \frac{\partial}{\partial x}\left[D(x,p)\frac{\partial f(x,p)}{\partial x}\right]$$

Advection Diffusion

Can embed microphysics from kinetic simulations into (M)HD

$$f(x,p) = f_{2}(p) \exp\left[-\int_{x}^{0} dx' \frac{\tilde{u}(x')}{D(x',p)}\right] \left[1 - \frac{W(x,p)}{W_{0}(p)}\right] \Phi_{esc}(p) = -D(x_{0},p) \left.\frac{\partial f}{\partial x}\right|_{x_{0}} = -\frac{u_{0}f_{2}(p)}{W_{0}(p)};$$

$$W(x,p) = \int_{x}^{0} dx' \frac{u_{0}}{D(x',p)} \exp\left[\int_{x'}^{0} dx'' \frac{\tilde{u}(x'')}{D(x'',p)}\right].$$

$$f_{2}(p) = \frac{\eta n_{0}q_{p}(p)}{4\pi p_{inj}^{3}} \exp\left\{-\int_{p_{inj}}^{p} \frac{dp'}{p'}q_{p}(p')\left[U_{p}(p') + \frac{1}{W_{0}(p')}\right]\right].$$

$$U_{p}(p) = \frac{\tilde{u}_{1}}{u_{0}} - \int_{x_{0}}^{0} \frac{dx}{u_{0}}\left\{\frac{\partial \tilde{u}(x)}{\partial x} \exp\left[-\int_{x}^{0} dx' \frac{\tilde{u}(x')}{D(x',p)}\right]\left[1 - \frac{W(x,p)}{W_{0}(p)}\right]\right\}.$$
CR distribution function

23

Type la SN Age=452yr Distance~3kpc

Only two free parameters: electron/proton ratio and injection (now constrained with PIC!)

Example 1: Tycho SNR

Acceleration efficiency. ~10% Protons up to ~0.5 PeV

Example 2: Nova RS-Ophiuchi

 $v_{\rm wind}$

This is likely a generic feature of nova eruptions and maybe even SN explosions!

Slow Component	Fast Component
$1 imes 10^{-7} M_{\odot}$	$1 imes 10^{-7} M_{\odot}$
$1300 {\rm ~km~s^{-1}}$	$4500 {\rm ~km~s^{-1}}$
$1.2 imes 10^{10} { m ~cm^{-3}}$	$5.0 imes10^7~{ m cm}^{-3}$
1.0 AU	6.0 AU
$5 imes 10^{-7} M_\odot { m yr}^{-1}$	$5 imes 10^{-7} M_\odot~{ m yr}^{-1}$
30 km s^{-1}	30 km s^{-1}

Example 3: Spectral Indexes in SNRs and Radio SNe

B amplification controls the CR spectrum, making it steeper (Caprioli+21) • Young SNe ($v_{sh} \sim 10^4$ km/s): $f(E) \propto E^{-3}$ SNRs ($v_{sh} \sim 10^3$ km/s): $f(E) \propto E^{-2.3} - E^{-2.7}$ The saturation of the Bell instability naturally explains both regimes! see also Cristofari, Blasi & Caprioli 2022 Modeling of shock-powered transients, including synchrotron absorption (Diesing+ in prep) Radio SNe, kilonovae, COWs/FBOTs, ...

Diesing & Caprioli 2021

26

Hadronic vs Leptonic Scenarios

HADRONIC (π_0 decay)

 γ -ray spectrum parallel to the proton one (~E⁻²)

Shock-accelerated spectra are steeper than E⁻² when acceleration is efficient
Studied self-consistently in PIC simulations (Haggerty+20, Caprioli+20)
Slope depends on B-field amplification (Zacharegkas, Caprioli, Haggerty+23)
Solves tension between theory and observations of SNRs, radio SNe, Galactic CRs (Caprioli11)

 γ -ray spectrum flatter than the proton (electron) one (~E^{-1.5})

27

Example 4: SNR Hadronicity

© CRAFT: time-resolved, synthetic spectra for different SNR environments (Corso, Diesing, DC 23) The γ -ray nature depends only on the SNR environment! 0 Crucial to account for B amplification Useful for predicting neutrino fluxes (Simon, Diesing, DC, in prog.)

U	Ŭ
)	0
0	0
	0
	0
D	0
)	0
0	0
0	0

Resonant Streaming Instability

TREE CION DE RESTOR STREES 20 STREES DE ROSSE DE RESCUENTER STREES SERVES SE ROSSE DE RESCUENTER

In the second of the second of

Maybe a Not-so-simple Question?

Ø Depending on the CR parameters, the: filamentation, Weibel, (modified) two-stream, Buneman, resonant, "interm-scale", Bell, ... instability may grow the fastest (e.g., Bret 2009) Caveat: fastest growing doesn't imply most important for saturation! 0 Most important regime for CR transport in the Galaxy: resonant instability Likely balance between growth and
 Bell: $\delta B/B_0 \sim \sqrt{\xi} \gg 1$ some damping Two-stream: (e.g., Reville+08,13; Riquelme+09; Gargaté+10, Zacharegkas+22) $\delta B/B_0 \gtrsim 1$ Transition from intrinsic to extrinsic (e.g., Niemiec+08, turbulence? Zacharegkas+21, Lichko, DC+, in resonant: $\delta B/B_0 \lesssim 1$ Need to explain, e.g., B/C, Be... prog.) (e.g., Holcomb+18, Bai+19, Haggerty+21)

 $2en_g v_A$

Towards Understanding Diffusion in the Galaxy

Object Does SI always trap CRs? No: diffusion requires a relic drift speed $v_d(p) \sim \frac{D(p)}{f(p)} \frac{df(p)}{dz}$

Seed to balance SI with: ion-neutral,... non-linear Landau damping (NLLD)

ID hybrid simulations of resonant SI, for Galactic-like conditions (Schroer, DC, Blasi 2024)

Checks all the signatures of NLLD (Lee-Völk 73: modification of Maxwellian, inverse energy cascade)
 First evidence of a relic drift energy: self-generated diffusion

Son-resonant (Bell) Instability A simulation-validated prediction for saturation (Zacharegkas+2024) CR propagation around sources (Schroer+2021, 2022) Relevant at scales probed by current galaxy simulations (Semenov+2021) CRAFT: CR Analytical Fast Tool, Fast tool for calculating CR spectra, including important plasma physics Corso+23, Simon+ in prog.) Resonant Streaming Instability Responsible for the formation of the galactic halo (Schroer+ in prog) May control CR propagation in the Galaxy and CR feedback

Summary

- Controls shock dynamics and CR acceleration (Haggerty & DC20, DC+21, Diesing & DC 2023)

Applied to SNRs, SNe, novae, expected hadronicity (Morlino+12, Diesing+21,23;

Saturation unknown; depends on balance with non-linear Landau damping (Schroer+24)

