Results from the DAMPE space mission

Ivan DE MITRI

Gran Sasso Science Institute (GSSI) & INFN Laboratori Nazionali del Gran Sasso

on behalf of the DAMPE Collaboration

DAMPE science goals

High energy particle detection in space

- Study of the cosmic <u>electron spectrum</u>
- Study of cosmic ray protons and nuclei
- High energy gamma ray astronomy
- Search for <u>dark matter signatures</u> in e/γ spectra

Detection of

10 GeV - 10 TeV e/γ

50 GeV – 0.5 PeV protons and nuclei

with excellent (e.m.) energy resolution , tracking precision and particle identification capabilities

- Exotica and "unexpected", e.g. GW e.m. counterpart in the FoV

The collaboration

- CHINA
 - Purple Mountain Observatory, CAS, Nanjing
 - Institute of High Energy Physics, CAS, Beijing
 - National Space Science Center, CAS, Beijing
 - University of Science and Technology of China, Hefei
 - Institute of Modern Physics, CAS, Lanzhou

• ITALY

- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- INFN LNGS and Gran Sasso Science Institute
- INFN Perugia and University of Perugia

• SWITZERLAND

- University of Geneva

- One ladder composed by 4 (SSD)
- 16 Ladders per layer (76 cm \times 76 cm)
- 12 layers (6x + 6y)

SUGAR 2024

Flexible cable Front-end Sensor #1 Sensor #2 Sensor #3 *Sensor #4 electromics

The CALOrimeter

14 layers of 22 BGO bars

- $-2.5 \times 2.5 \times 60$ cm³ bars
- 14 hodoscopic stacking alternating orthogonal layers
- depth $\sim 32X_0$
- Two PMTs coupled with each BGO crystal bar at the two ends
- Electronics boards attached to each side of module

GS

S

INFN

The Plastic Scintillator Detector and the NeUtron Detector

- 1.0 cm thick ,2.8cm wide and 82.0 cm long scintillator strips
- staggered by 0.8 cm in a layer
- 82 cm × 82 cm layers
- 2 layers (x and y)

 4 large area boron-doped plastic scintillators (30 cm × 30 cm × 1 cm)

Comparison with CALET, AMS and FERMI

	DAMPE	CALET	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	1.2	1.5 - 3.0	3	10
e/γ Angular res.@50 GeV (deg)	0.2	0.2	0.3	0.1
e/p discrimination	10⁵-10 ⁶	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	32	30	17	8.6
Geometrical accep. (m ² sr)	0.3	0.1	0.09	1

Ivan De Mitri : Results from the DAMPE space mission

Comparison with CALET, AMS and FERMI

	DAMPE	CALET	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	1.2	1.5 – 3.0	3	10
e/γ Angular res.@50 GeV (deg)	0.2	0.2	0.3	0.1
e/p discrimination	10⁵-10 ⁶	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	32	30	17	8.6
Geometrical accep. (m ² sr)	0.3	0.1	0.09	1

Ivan De Mitri : Results from the DAMPE space mission

Test beam activity at CERN

- 14days@PS, 29/10-11/11 2014
 - e @ 0.5GeV/c, 1GeV/c, 2GeV/c, 3GeV/c, 4GeV/c, 5GeV/c
 - p @ 3.5GeV/c, 4GeV/c, 5GeV/c, 6GeV/c, 8GeV/c, 10GeV/c
 - $-\pi$ -@ 3GeV/c, 10GeV/c
 - γ @ 0.5-3GeV/c
- 8days@SPS, 12/11-19/11 2014
 - e @ 5GeV/c, 10GeV/c, 20GeV/c, 50GeV/c, 100GeV/c,
 - 150GeV/c, 200GeV/c, 250GeV/c
 - p @ 400GeV/c (SPS primary beam)
 - γ@ 3-20GeV/c
 - μ @ 150GeV/c,
- 17days@SPS, 16/3-1/4 2015
 - Fragments: 66.67-88.89-166.67GeV/c
 - Argon: 30A-40A-75AGeV/c
 - Proton: 30GeV/c, 40GeV/c
- 21days@SPS, 10/6-1/7 2015
 - Primary Proton: 400GeV/c
 - Electrons @ 20, 100, 150 GeV/c
 - γ @ 50, 75 , 150 GeV/c
 - μ @ 150 GeV /c
 - π+ @10, 20, 50, 100 GeV/c
- 10days@SPS, 11/11-20/11 2015
 - -- Pb 30AGeV/c (and fragments) (HERD)
- 6days@SPS, 20/11-25/11 2015
 - -- Pb 030 AGeV/c (and fragments)

Jiuquan Satellite Launch Center Gobi desert

CZ-2D rocket

Mass: 1850 kg (scientific payload 1400 kg) Power : 640 W (scientific payload 400 W) Orbit: sun syncronous Altitude: 500km Inclination: 97.41° Period: 95 minutes Downlink: 16 GB / day Lifetime: > 3 years

复化测的容标 -线燃料4 HEROTON. 报上党动机 WHEN Y outrit is been STATE OF and the second

SUGAR 2024

Ivan De Mitri : Results from the DAMPE space mission

Ivan De Mitri : Results from the DAMPE space mission

10²

Energy (GeV)

(The power of powers....)

At the TeV scale:

- diffusion-loss length is approx 300pc
- confinement time is approx 100 kyr
- \rightarrow The spectra at high energies are dominated by close and young cosmic ray sources
- \rightarrow Bumps might appear in the spectra above few TeV due to local sources
- \rightarrow Possible anisotropies

The DAMPE proton spectrum

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

GS SI

INFN

Confirms the hundreds of GeV hardening

PSD Charge

Detecting a softening at ~14 TeV with high significance

Ivan De Mitri : Results from the DAMPE space mission

Primary energy (GeV) 23

S SI **p and He:** comparison and updates INFN

G

Ivan De Mitri : Results from the DAMPE space mission

SUGAR 2024

Ivan De Mitri : Results from the DAMPE space mission

Carbon and Oxygen

Preliminary DAMPE results do confirm the hardening and improve the precision at high energies. Work in progress for the extension up to hundreds TeV

GS

S

INFN

Ivan De Mitri : Results from the DAMPE space mission

Ivan De Mitri : Results from the DAMPE space mission

The all-particle spectrum

- A single measurement across almost 4 orders of magnitude
- Not the sum of single spectra but independent analysis slecting all nuclei
- Small (composition) model dependence, within the quoted systematics

Fractionally charged particles

- Beyond the Standard Model prediction
- Strongest upper limits from underground experiment (e.g. MACRO) but above hundreds TeV
- Space based searches applies to kinetic energies above few GeV

G S **Photon detection with DAMPE** SI DAM INFN • Energy resolution: better than 1.5% above 10GeV normal incidence 30 deg incidence • Angular resolution: better than 0.3° above 10GeV containment] normal beam test • Effective area $\sim 0.1 \text{ m}^2$ between few GeV and few TeV 0.04• The energy resolution has been checked at beams [68% • The Point Spread Function (PSF) has been calibrated 0.03 Lesolution with photons from 52 AGNs and 3 pulsars About 2 sky surveys/year Energy 0.01 60° 60 0.00 10⁰ 101 10^{3} 10^{2} 10 Energy [GeV] 30° 30 10^{1} R68 from simulation 0° R68 scaled with data 0° Angular resolution (degree) R68 fitted with pulsars 270° 225° 135 315° R68 fitted with AGNs -30° -30° preliminary 10^{-} -60° -60° 10-7 10-6 10-5 10-4

7.2 years DAMPE map (4·10⁴ events/year above 2GeV)

SUGAR 2024

Ivan De Mitri : Results from the DAMPE space mission

 $F_{>2GeV}$ (ph/(cm² s sr))

 10^{-2}

 10^{1}

Energy (GeV)

 10^{2}

Gamma ray astronomy

Welcome to use DAMPE photon data !

https://dampe.nssdc.ac.cn/dampe/dataquerysc.php http://dgdb.pmo.ac.cn/dampe/

Point source catalog

Source type	number
AGN	241
Pulsar	62
SNR/PWN	14
Binary	5
Global cluster	4
Unassociated	10
Total	336

Summary

The detector

- Large geometric factor instrument (0.3 m² sr for p and nuclei)
- Precision Si-W tracker (50 μm , 0.2 $^\circ$)
- Thick calorimeter (31 $\rm X_0$, $\sigma_{\rm E}/\rm E$ better than 1% above 50 GeV for e/ γ , ~35% for hadrons)
- "Multiple" charge measurements (0.2-0.3 e resolution)
- e/p rejection power > 10⁵ (topology alone, plus neutron detector)

Launch and performances

- Succesfull launch on Dec 17th, 2015
- On orbit operation steady and with high efficiencies (50 Hz, more than 13 billion events)
- Absolute energy calibration by using the geomagnetic cut-off (+1.25% at 13 GeV)
- Absolute pointing cross check by use of the photon map (PSF = 0.3° for 10GeV photons)
 Science:
- Evidence for a cutoff at ~1 TeV in the all electron spectrum
- Evidence for a softening in the proton spectrum at \sim 14 TeV
- Evidence for a softening in the helium spectrum at ~ 34 TeV (suggest Z dependence)
- Measurement of p+He confirms the softening and suggest a hardening around 100TeV
- Break in secondary to primary ratios (B/C and B/O) at 100 GeV/n
- Preliminary spectral measurements of heavier nuclei (C, N, O Fe, ...) and light secondaries (Li, Be, B)
- Studies of gamma ray sources (>300 sources, Fermi bubble, ...)
- Detected new features in Forbush decrease
- Upper limits for dark matter signatures, fractionally charged particles, ...