

OCTOBER 14-17

AMS-02 results and perspectives for future measurements with a magnetic spectrometer

Paolo Zuccon Trento University & INFN TIFPA

AMS-02: Alpha Magnetic Spectrometer

Launch **MAY 2011** Construction 1999-2010 **Dimensions** $3 \times 4 \times 5$ m³ Weight 8.5 t Power 2500 W

AMS will take data at least through 2030

International Space Station

AMS-02 measures charged cosmic rays in the rigidity window from 1 GV to several TV

AMS: A TeV-Precision Spectrometer in Space

Particles and nuclei are defined by their charge (Z) and energy (E) or momentum (P). Rigidity $R = P/Z$

Primary Cosmic Rays

Carbon and Oxygen Fluxes

- C and O show a hardening at hundreds of GeV/n. \bullet
- Similar energy dependence observed by AMS-02 and CALET.
- Difference in flux normalization between experiments.
- C/O is smooth, meaning that C and O have similar hardening. \bullet
- All experiments agree in the C/O. \bullet

AMS has made nuclei Interaction cross-section measurements (N+C) in a wide rigidity range from a few GV to TV allowing for the precise control of the flux normalization. About Flux Normalization: the Nuclear Cross Sections
AMS has made nuclei Interaction cross-section measurements (N+C) in a wide rigidity range
from a few GV to TV allowing for the precise control of the flux normalization.

Nuclear inelastic interactions (nuclei over C, AI, Si) are in general **not well known**, and are important for accurate Nuclear zuccon - Sugarza of CRs and to understand the differences between different experimental meas

He, C, O, Ne, Mg, and Si

AMS studied with precision the spectral behavior of low-Z He $(Z=2)$, C $(Z=6)$, and O $(Z=8)$ and high-Z Ne $(Z=10)$, Mg $(Z=12)$ and Si $(Z=14)$ primaries.

He, C, and O have the same rigidity dependence (i.e. hardening) above 60 GeV. Above 86.5 GV the Ne, Mg and Si have a different spectral dependence with respect to He, C and O. P. Zuccon - SUGAR24 8

Iron and Nickel Fluxes and Their Ratio

Similar energy dependence observed by recent AMS-02 and CALET data. Some normalization difference between different experiments.

While cosmic ray **primaries** are mostly produced at astrophysical sources (ex. e⁻, p, He, C, O, ...), **secondaries** (ex. Li, Be, B, …) are mostly produced by the collision of cosmic rays with the ISM. Secondary Cosmic Rays
are mostly produced at astrophysical sources (ex. e⁻, p, He, C, O, ...),
...) are mostly produced by the collision of cosmic rays with the ISM.

Cosmic rays are commonly modeled as a relativistic gas diffusing into a magnetized plasma. Basic^s characteristics of this models are understood studying the **secondary/primary** ratios.¹⁰

All light nuclei fluxes deviate from single power law above 200 GV. **Secondary hardening is stronger**.

 $_{\sf P. \; Zuccon}$ ംപ്പ്ലൂ്ട് $_{\sf A}$ favors the hypothesis that the flux hardening is a **universal propagation effect**. അവ

Secondary/Primary Ratio as a Function of Z

Primary/Secondary Composition with AMS

The composition fits are based on assumed pure primary (O, Si) and secondary (B, F) fluxes.

Odd-Z nuclei have more secondaries than even-Z

Hydrogen and Helium ISOTOPES

- Smaller cross section of He: D/⁴He and ³He/⁴He probe the properties of diffusion at larger distances
	- \bullet Different A/Z ratios of D and ³He allow to disentangle kinetic energy and rigidity dependence of propagation.

 \overline{p} , 10 GeV e

- AMS is composed by different sub-detectors for the redundant ID of the elements in CR
- The **Mass** is identified from the concurrent measurement of **Rigidity, Velocity** and **Charge**
- **Mass resolution** not good enough for event-by-event isotope ID -> Fit of distribution

Light isotope measurements with AMS02

3He/4He and D/4He Flux Ratios

Unexpectedly, the D/⁴He flux ratio spectral index is different from that observed for the ³He/⁴He flux ratio.

D/p Flux Ratio

D/p flux ratio is increasing with rigidity and flattens out at high rigidities. This shows that the D and p fluxes have a nearly identical rigidity dependence between 13 and 21 GV

Deuteron as Primary and Secondary like components

weighted linear combination of primary flux , Φ ^{4He} and secondary flux, Φ ^{3He} above 4.5 GV.

Unstable Secondary Cosmic Rays

Preliminary Measurement ¹⁰Be/⁹Be with AMS-02

• AMS mass resolution depends on rigidity $(R = P/Z)$ and velocity (β) resolutions:

$$
\frac{\Delta M}{M} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{1}{1 - \beta^2} \cdot \frac{\Delta \beta}{\beta}\right)^2}
$$

R measurement : \bullet

• Traceker,
$$
\frac{\Delta R}{R}
$$
 ~9% $(Z = 1)$, 10% $(Z = 4)$ below 20 GV

 β measurements:

- The precision on the Galactic halo size L from the AMS data is about \sim 0.5 kpc.
- Error on L is dominated by the uncertainty on spallation \bullet cross-sections $~1$ kpc (D. Maurin et al., A&A 667 (2022) A25).

Positron and Electron Fluxes

CS
M. Aguilar *et al.*, Phys. Rep. 894 (2021) 1-116. 22 • Spectrometric technique.

• Spectrometric technique.

• Traditionally the positron excess has been observed and commented on the positron fraction.

• Spectrometric technique.

• Spectrometric technique.

• Spectrom 10 0

-
-
-

Positron + Electron Flux

- Can be done also by calorimeters and by experiments on ground.
- Disagreements between "groups of experiment".
- Dropoff at high energy, and a structure above 1 TeV (?).
- This channels allow to collect high statistics, and study anisotropy that is important to ascertain the origin of structures.

Uncertainty in Antiproton Astrophysical Background
 With antiproton production:

Intertainty in galactic propagation:

Intertainty in solar modulation

Intert measurement of Tas function as a standard and the galactic p UNCETT A MEXIC AND A SETOP NY SICAL BACK GIOUND

Interview in antiproton production:

Interview in solar modulation

Interview is solar modulation

Interview of the cross section (as C + p à B):

The allows the accurate m

Uncertainty in antiproton production:

measurements of the ^{production} cross section for $+$, He \rightarrow \overline{a} re needed. **LHCb/SMOG:** + He \rightarrow at $\sqrt{ }$ =

Uncertainty in galactic propagation:

parameters of the galactic propagation (diffusion coefficient, galactic halo size, …) depend on the knowledge of

at SPS (CERN). Pilot run in 2018.

Uncertainty in solar modulation:

direct measurement of as function of time allows the accurate modelling of solar modulation.

110 GeV measurement already done. **AMS-02:** measurement of all CR species over a solar cycle. AMS-02: measurement of all CR species over a solar cycle.

Heavy Antimatter in the Cosmos Matter is defined by its mass *M* **and charge** *Z***. Antimatter has the same mass** *M* **but opposite charge** *–Z***.**

D, He, C, O …

Antimatter Star

R Zuccon- SU**AMS is a unique antimatter spectrometer in space** 26

26

AMS on ISS

or 100

RICH 1

• Future AMS upgrade will provide additional measurement point to antideuterons. P. Zuccon - SUGAR24 Improve analysis techniques, further MC study to better understand the background. 27

anti-He

AMS-02

AMS-02 Upgrade: L0 Layer to Increase Acceptance (2026)

The increase of 300% in the acceptance will allow for the best use of the time left on the ISS, allowing higher rate in data collection for many analysis channels (positrons, nuclei, ...).

Advantages

- Extend positron spectrum measurement to 1.4 TeV
- Extend Electron spectrum measurement to 1.4 TeV
- Improve the accuracy of the anti-proton measurement
- Measure positron isotropy, to a 3.4 sigma significance with respect pulsars hypothesis
- High accuracy on Fe and sub-Fe
- Daily fluxes of heavier nuclei as C and O
- Search for rare events as anti-deuteron

AMS-02 upgrade

Fig 1(b): Positron studies at highest energies. Please note that the highest energy point are from collisions only.

Positron anisotropy projection up to 2030 with upgrade

Electron Spectrum at High Energy 30

FUTURE SPECTROMETERS

AMS-100: A Next-Generation Magnetic Spectrometer

S. Shael et al., Voyager 2050 White Paper (2021).

A vastly larger detector than the current generation (factor of 100 in energy and Acceptance with respect AMS-02):

- Antimatter.
- e^{\pm} up to 10 TeV.
- CRs composition above knee.

ALADInO: Antimatter Large Acceptance Detector in Orbit

Location Lagrange Point L₂

Installation >2030

Dimensions 2–44m L=2m

5-year operations in L2

Location Lagrange Point L²

<https://doi.org/10.3390/instruments6020019>

Physics objectives:

- **Anti-nuclei;**
- *e [±]* **up to 10 TeV;**
- 2 m

https://doi.org/10.3390/instruments60200
 Physics objectives:

 Anti-nuclei;

 e[±] up to 10 TeV;

 Cosmic ray comp. up to
 knee. *knee***.**

ALADInO Pathfinder: LAMP

Progressing in particle astrophysics with the **ALADInO**
Antimatter Large Acceptance Detector In Orbit **ALADInO**

High Temperature Superconducting Magnetic Spectrometer in space

mid 2030s: ALADInO Pathfinder

LAMP: Light **A**ladino-like **M**agnetic s**P**ectrometer

P. Zuccon - SUGAR24 34

ALADInO Pathfinder: LAMP

Large acceptance missions in Space

HTS magnet for space: the frontier

UNIVERSITÀ DEGLI STUDI DI MILANO

OPEN ACCESS IOP Publishing

Supercond, Sci. Technol, 33 (2020) 044012 (12pp

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/ab669t

Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space

Roberto Iuppa [Roberto Iuppa](mailto:roberto.iuppa@unitn.it)

Magnus Dam¹®, Roberto Battiston^{2,3}®, William Jerome Burger³®, Rita Carpentiero⁴, Enrico Chesta¹®, Roberto luppa^{2,3}®, Gijs de Rijk¹® and Lucio Rossi^{1,5}[®]

¹ CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland ² Department of Physics, University of Trento, I-38122 Trento TN, Italy ³ TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Povo TN, Italy ⁴ ASI, Italian Space Agency, I-00133 Rome RM, Italy ⁵ On leave from: Department of Physics, University of Milan, I-20133 Milano MI, Italy

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 4, JUNE 2022

E-mail: magnus.dam@cern.ch Supercond. Sci. Technol. 33 044012 (2020)

Design and Modeling of AMaSED-2: A High

Temperature Superconducting Demonstrator Coil for the Space Spectrometer ARCOS

Magnus Dam[®], William Jerome Burger[®], Rita Carpentiero, Enrico Chesta[®], Roberto Iuppa®, Gijs de Rijk®, and Lucio Rossi \odot

IEEE TRANS. ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 4 (2022)

IOP Publishing Supercond, Sci. Technol, 36 (2023) 014007 (8pp)

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/aca6a

4500109

Manufacturing and testing of AMaSED-2: a no-insulation high-temperature superconducting demonstrator coil for the space spectrometer ARCOS

Magnus Dam^{1,*}⁰, William Jerome Burger²⁰, Rita Carpentiero³⁰, Enrico Chesta⁴⁰, Roberto luppa^{2,5}⁰, Glyn Kirby⁴⁰, Gijs de Rijk⁶⁰ and Lucio Rossi^{1,7}⁰

P. Zuccon -

Supercond. Sci. Technol. 36, 014007 (2023)

36

SUGAR24

• Future AMS upgrade will provide additional measurement point to antideuterons. P. Zuccon - SUGAR24 Improve analysis techniques, further MC study to better understand the background. The sta

Anti Deuterons in Cosmic rays

Anti Deuterons have been proposed as an almost background free channel for Dark Matter indirect detection

Established mission

Idea for the Future

ADHD Anti Deuteron Helium Detector

The Anti Deuterons Flux is $< 10^{-4}$ of the Antiproton Flux. **Additional background rejection**

Helium metastable states

 10^{6}

 10^{5}

 $10⁴$

 10^{3}

 10^{2}

 10^{1} 10^{0}

 Ω

ns

100

Counts

prompt annihilation

5

 $t = 3.3 \, z$

10

Annihilation Time $[\mu s]$

He Gas 3 atm

 T_{av} (>1 μ s) = 3.18 ± 0.04 μ s

15

delayed

annihilation

20

25

-In matter lifetime of stopped anti-p is \sim ps -In liquid/gas He delayed annihilation: few µs $(-3.3%$ of the anti-p)(discovered @ KEK in 1991)

Observed also for K^- , π^- and expected for anti-D

ASACUSA @ CERN use He metastable states to measure anti-P mass

a signature for Z=-1 antimatter captures in He is a ~µs delayed energy release

Anti-Deuteron Helium Detetector (ADHD) Particle Identification

Helium pressurized vessel Surrounded by Scintillating TOF

ADHD: Typical signals in Helium

anti-p/anti-D separation: prompt signal S1

 0°_{0}

 0.2

 0.4

 0.6

 0.8

 1.2

 1.4 β /E classifier

25

20

15

10

300

220

180

80 60 40

20

ADHD: anti-p/anti-D separation: delayed signal S2

delayed signal amplitude is independent from Ekin: ~3 charged pion/antinucleon -ToF delayed activity classifier = $\#$ ToF delayed hits \bigoplus ToF delayed energy

ზ.

 0.4

 0.2

 0.6

 0.8

 1.2

Delayed Signal Classifier

 1.4

1.6

43

ADHD: Advanced prototype development status

Pressurized Helium Scintillating Calorimeter for AntiMatter Identification F. Nozzoli, L. Ricci, F. Rossi, P. Spinnato, E.Verroi, P. Zuccon

Segretariato Generale

Direzione Generale della Ricerca

PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE - Bando 2022 Prot. 2022LLCPMH

<https://www.tifpa.infn.it/projects/prin2022-phescami/> Instruments 2024, 8(1), 3; <https://doi.org/10.3390/instruments8010003>

Grant to develop a ADHD prototype using a commercial COPV Type-4 tank for automotive

Summary

- Cosmic rays are in a precision era
- AMS-02 will continue the measurement of all the nuclei up to Iron and isotopes at least up Nitrogen
- Calorimetric experiments like DAMPE and CALET are extending the measurement at higher energies, and possibly HERD will give in the future important new measurements
- AMS -02 with the upgrade will provide an extended and more accurate measurement of the elementary particle fluxes, especially anti -p and positrons
- New magnetic spectrometer experiments would be able to investigate the positron and anti -p spectra and search for anti -matter in the CR
- The search for low energy anti-deuterons is also a very promising channel for DM.

BACKUP SLIDES

HTS magnet for space: the frontier

UNIVERSITÀ DEGLI STUDI DI MILANO

OPEN ACCESS IOP Publishing

Supercond, Sci. Technol, 33 (2020) 044012 (12pp

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/ab669t

Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space

[Roberto Iuppa](mailto:roberto.iuppa@unitn.it)

Magnus Dam¹®, Roberto Battiston^{2,3}®, William Jerome Burger³®, Rita Carpentiero⁴, Enrico Chesta¹®, Roberto luppa^{2,3}®, Gijs de Rijk¹® and Lucio Rossi^{1,5}[®]

¹ CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland ² Department of Physics, University of Trento, I-38122 Trento TN, Italy ³ TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Povo TN, Italy ⁴ ASI, Italian Space Agency, I-00133 Rome RM, Italy ⁵ On leave from: Department of Physics, University of Milan, I-20133 Milano MI, Italy

E-mail: magnus.dam@cern.ch Supercond. Sci. Technol. 33 044012 (2020)

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 4, JUNE 2022

Design and Modeling of AMaSED-2: A High Temperature Superconducting Demonstrator Coil for the Space Spectrometer ARCOS Magnus Dam[®], William Jerome Burger[®], Rita Carpentiero, Enrico Chesta[®], Roberto Iuppa®, Gijs de Rijk®,

and Lucio Rossi \odot

IEEE TRANS. ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 4 (2022)

IOP Publishing Supercond, Sci. Technol, 36 (2023) 014007 (8pp)

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/aca6a

4500109

Manufacturing and testing of AMaSED-2: a no-insulation high-temperature superconducting demonstrator coil for the space spectrometer ARCOS

Magnus Dam^{1,*}[®], William Jerome Burger²[®], Rita Carpentiero³[®], Enrico Chesta⁴[®], Roberto luppa^{2,5}⁰, Glyn Kirby⁴⁰, Gijs de Rijk⁶⁰ and Lucio Rossi^{1,7}⁰

P. Zuccon - SUGAR24 47

Supercond. Sci. Technol. 36, 014007 (2023)

Conductor and cable configuration

[Roberto Iuppa](mailto:roberto.iuppa@unitn.it)

SuperPower 2G HTS tape

HTS tape

Cable configuration

- No-insulation winding technique
- Two-tape stack
- Dry wound with first and last turns soldered

Very Easily

current

No Bypass !!

Very Large!

 $\sqrt{\frac{1}{2}}$

Turn to Turn

Contact resistance

Supercond, lave

Stabilize Metal (SUS.)

Hot spot

Medium !!

Bypass

current

SUGAR24 48

Appl. Sci. 2021, [11\(7\), 3074](https://www.mdpi.com/2076-3417/11/7/3074)

ins. winding only no ins. winding metallic ins. winding

Small !!

Magnetic critical current measurements

[Roberto Iuppa](mailto:roberto.iuppa@unitn.it)

o Data 1.2 $-$ Fit $I_{\rm op}$ [kA] 0.9 0.6 0.3 0.3 0.6 0.9 1.2 Ω B_0 [T]

Figure 5. The operating current I_{op} as a function of the convergence value of the central magnetic flux density B_0 for $T_{op} = 40$ K.

P. Zuccon

Figure 4. Measurement for $T_{op} = 40$ K where we increased the operating current I_{op} in steps until we approached the magnet critical current I_{mc} .

- SUGAR24 WLS system for the PHeSCAMI project

Wavelength (nm)

Hard to extract VUV from the tank. It is absorbed from the walls and we need an optical window for 400bar

2 stages WLS: similar to the one developed for LAr (127nm) in DUNE X-Arapuca: C.Brizzolari 2021 [JINST 16 P09027](https://doi.org/10.1088/1748-0221/16/09/P09027)

1100

step1: Para-TerPheny (PTP) deposited on the tank walls shift from 80 nm to 350 nm

50 shift from 350 nm to 430 nm step2: MMA central fiber doped with BBT (FB118 developed by G2P Rovereto)

Francesco Nozzoli - ECRS2024 26/09/2024