The Greenland Telescope

Ming-Tang Chen Academia Sinica, Institute of Astronomy & Astrophysics

on behalf of The GLT Project

Academia Sinica Institute for Astronomy & Astrophysics

Aarhus University, Niels Bohr Institute, Technical University of Denmark, the University of Southern Denmark

Current Status

- The Greenland Telescope has been operating in Pituffik (Thule), Greenland!
- First light at the end of 2017!
- VLBI observations (86, 230, 345 GHz) since April 2018 !
- Joined Event Horizon Telescope and Global Mm-wave VLBI Array
- Developed remote/local operations
- 345 GHz fringes detected between GLT and ALMA
- In preparation for moving to Greenland summit.

Event Horizo Telescope (EHT) A Global Network of Radio Telescopes

Greenland Summit

- Criteria for new submm site for VLBI
 - High and dry submm sites
 - Mutual visibility with SMA and ALMA
 - Logistics and accessibility
 - Unique VLBI baseline

Greenland Summit

TABLE 1 Comparison of 225 GHz opacity quartiles between three sites.

Site	Season	Quartiles		
		25%	50%	75%
Greenland	Winter	0.046	0.060	0.080
	Summer	0.089	0.118	0.159
ALMA	Winter	0.035	0.050	0.080
	Summer	0.071	0.131	0.261
South Pole	Winter	0.041	0.048	0.057
	Summer	0.050	0.062	0.076

Matsushita, S. et al 2017, PASP, 129, 1

Greenland – Summit Station

- Established/operated by US NSF & Greenland Government.
 - Atmospheric and weather researches are main topics. Established in 1989.
 - N72.60°, W38.42°. Altitude: 3210m.
 - Summer: 45 people, Winter: 5 people (3 months shift)
 - Possible to carry things by flights with C-130, etc., or through land
 - Currently under expansion (Recapitalization)

Greenland – Summit Station

- Established/operated by US NSF & Greenland Government.
 - Atmospheric and weather researches are main topics. Established in 1989.
 - N72.60°, W38.42°. Altitude: 3210m.
 - Summer: 45 people, Winter: 5 people (3 months shift)
 - Possible to carry things by flights with C-130, etc., or through land
 - Currently under expansion
 - (Recapitalization)

History

2011: ALMA Prototypes, Socorro, NM

2016: Pre-assembly, Norfolk, VA

History

2017: Assembling, Thule,

Greenland

2020: In operation, Thule, Greenland

GLT Specifications

Antenna characteristics					
Keyword	Value				
Primary Aperture	12.0 m				
Focal Length (Primary)	4.80 m				
fp / D of Primary	0.40				
Secondary Aperture	0.75 m				
Final f / D	8.00				
Primary Illumination (Edge Taper)	12 dB				
Magnification Factor	20.0				
Primary Angle of Illumination	128.02°				
Secondary Angle of Illumination	7.16°				
Distance from Primary to 2nd Foci	6.177 m				
Depth of Primary	1.875 m				
Primary Vertex Hole Clear Aperture	0.75 m				
Elevation axis travel range	+1.89° to +90°				
Azimuth axis travel range	-180° to +360°				
Total weight	112 Metric ton				

Required operating conditions on Greepland's Summit					
Keyword	Primary		Secondary	Survival	
Ambient temperature	0 to -50 °C		-50 to -55 °C	-55 to -73 °C	
Vertical temperature gradient*	+12K to -1K		+15K to -2K	N/A	
Wind speed	0 to 11 m/sec		11 to 13 m/sec	55 m/sec	

GLT Subsystems

GLT Orientations

GLT Nutator (Hexapod)

Table 3 GLT hexapod sub-reflector characteristics

Keyword

- Min. dynamic loading53 kgDimensionsDia. 580 mm,Total weight67 kgInterface materialInvarMovement in x and y axis
- Distance
- Slewing Mode
- Collimation mode

Movement in z axis (optical axis)

- Distance
- Slewing Mode
- Focus adjustment
- Focus switching

₋₁₅₀ C

- Nutating - Chopping Range
- Accuracy
- Direction
- Chopping Freq
- Chopping mode
- Settling time

Value 53 kg Dia. 580 mm, Ht. 613 mm 67 kg Invar

+/- 5 mm from center Less than 0.5 mm/sec Min. steps of 20 μm, 10 μm differential accuracy

+/- 10 mm from center Less than 0.5 mm/sec Min. steps of 20 μ m, 5 μ m differential accuracy Perform cycles up to +1.5 mm and -1.5 mm with repeatability of +/- 20 μ m

10 arcmin maximum 1,3 arcsec Any directions 2 Hz Two position chopping Less than 50 ms

GLT VLBI Receiver

Single cryostat, three receiver cartridges

Keyword	Rx86	Rx230	Rx345
Origin	ASIAA	OPU	IRAM
Polarization	Dual Circular	Dual Circular	Dual Linear
RF freq. range	84 – 96	213 – 231	275 – 373
LO freq. range	80-88	221 - 223	283 - 365
1st stage detector	MMIC	SIS	515
Mixing scheme	USB after 1st miker	2SB	25B
# of IF channel	2	4	4
IF (GHz)	4-0	4-0	4-0
VLBI LO freq. (GHz)	80.6	221.1	342.6
TSSB (K) 80% LO range (All)	90	70 (110)	147 (21 9)

First Light

GLT Cryostat (2nd Version)

JCMT Installation

Reference Signals Distribution

Receiver LO/IF Distribution

IF/Baseband Processing

- Extended Block Down Converter x 2
- Input switch select receiver channel
- IF: 4-8 GHz —> 2 blocks of 0-2 GHz
- Duplication of signals; one sent to R2DBEs, and one to spectrimeters
- R2DBE digitizes the blocks and sent to Mark6 recoder

Test Tones Gen/Processing

- Critical setup for VLBI observations
- Tone sources for all three receiver cartridges
- When needed, a rotation arm will move the source into the signal beam
- Designed to generate a tone ~
 6.0 GHz
- Compare the signal with reference and ensure stable phase

Photogrammetry

Antenna Control System

Fringe Detection with ALMA 2018

Moving to Summit

- A difficult, dangerous, and expensive journey
- High operation cost on Summit
- Difficult to access; summer or winter
- But doable nevertheless
- Highest resolution achievable from ground
- VLBI at 690 GHz: Black hole photon rings

Curtesy of JP Steffensen @ EGRIP

GLT on Skis

Summary

- One and only submm radio telescope in the polar region
- A critical station for submm VLBI observations
- For optimal outcome: Move to Summit Station
- However difficult: Ultimost resolution for black hole images (from ground)

https://doi.org/10.1088/1538-3873/acf072 (Published in PASP, Sep 13, 2023)