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What’s Inside

● What and Why

● SPIDER-1

● Foregrounds

● SPIDER-2
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The CMB is a Goldmine 

Courtesy NASA/JPL-Caltech
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Search for Primordial B-modes
What and Why

Julian Borrill

● r : tensor-to-scalar energy ratio 

● Tensor perturbations affect temperature and 
polarization

● Want to measure B-mode polarization as 
the *clean* signature of r

Gravitational 
Waves

Thomson 
Scattering 

Gravitational 
Waves
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What and Why Measurement Challenges

Very faint 
signal

Polarization ≪ 
Temperature

B-modes ≪ 
E-modes

Primordial 
vs. Lensed 
B modes

M. Kamionkowski 2015

Atmospheric Loading

ESA/Hubble (F. Granato)

150 GHz
95 

GHz

Galactic Foregrounds

Planck/ESA 2015 5



Why
Analysis:

● Aiming to measure B-mode signal, constrain r (2103.13334)
● Better understand diffuse dust emission

(coming soon!)
● Create near-orbital quality 280 GHz map for future exps 

(future work)
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Why
Analysis:

● Aiming to measure B-mode signal, constrain r (2103.13334)
● Better understand diffuse dust emission

(coming soon!)
● Create near-orbital quality 280 GHz map for future exps 

(future work)

Hardware:
● Develop and implement robust detectors; heritage for future 

exps
(1606.09396, 1711.04169, 2002.05771, 2012.12407…)

● Develop and implement cryostat hardware, gondola, pointing, 
thermal performance, etc. 
(1506.06953, 1407.2906, 1407.1881, 1407.1880, 1106.2507)
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Why
Analysis:

● Aiming to measure B-mode signal, constrain r (2103.13334)
● Better understand diffuse dust emission

(coming soon!)
● Create near-orbital quality 280 GHz map for future exps 

(future work)

Hardware:
● Develop and implement robust detectors; heritage for future 

exps 
(1606.09396, 1711.04169, 2002.05771, 2012.12407…)

● Develop and implement cryostat hardware, gondola, pointing, 
thermal performance, etc. 
(1506.06953, 1407.2906, 1407.1881, 1407.1880, 1106.2507)

People:
● Train young scientists for earth, balloon, and space 

observational experiments
● Vast skill set: computer design, cryogenics, data analysis, 

electronics, machining, rigging, supercomputing, vacuum 
work
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What is SPIDER

CMB polarimeter flying on a NASA Long Duration Balloon 
from McMurdo Antarctica

SPIDER 1: 2014-15 
● 6 telescopes, half degree beams 

3 x 95, 3 x 150 GHz
● Flew for 16 days
● As much sky as possible given constraints

(Galactic equator, sun, earth’s limb, balloon)
● 4.8% of sky used in analysis
● High fidelity polarization measurement at ℓ ~(33, 260)
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Long Duration Ballooning Platform
2 millimeters thick

1 million cubic meters
(195 Goodyear Blimps)

Altitude: ~36 km
Payload: 3000 kg
Duration: >50 days

Parachute and Flight 
Train

SPIDER-2 Gondola
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SPIDER-1

A. Rahlin

Atmospheric Loading



Very faint signal

Tackling Measurement Challenges

Meyer Tool & Manufacturing

S. Bryan 2016

Sensitive detectors
● 2300 sensors at 0.3K
● Reduced stray loading 

with absorptive filters at 
many temperature 
stages

Controlling Systematics
● half-wave plates to 

modulate signal 
polarization

● Stepped twice a day 
throughout flight to 
reduce polarization 
systematics

Long Duration
● 1300 L liquid helium 

tank
● 16 L superfluid tank
● Multi-week capacity

● Longest overland 
flight possible

● Low radio/comm 
interference

● 24h sun for solar 
panels

SPIDER-1
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Time-Ordered Data

Cleaned Data

Frequency Maps
in 4 indep. chunks

Foreground Cleaned 
Bandpowers

Foreground Results:

● For 90 and 150 GHz 
separately

● Dust templates with 353 
and 217 GHz

Cosmological Result:

● Feldman-Cousins and 
Bayesian limit

● Pipeline discrepancies 
and error discussion

Flag noisy 
times and filter

bin timestreams 
into sky maps

Template (spatial):
XFaster
NSI (PolSPICE)

Harmonic (in ell):
SMICA

2103.13334Analysis Pipeline
SPIDER-1
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Modeling Foregrounds with Template Subtraction
Construct a dust template using Planck difference maps

Where        refers to a map at a high dust frequency. We use both 353 and 217 GHz

2103.13334

Assumes fixed dust 
morphology, only 

amplitude variation

SPIDER-1
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Construct a dust template using Planck difference maps

Where        refers to a map at a high dust frequency. We use both 353 and 217 GHz

Planck 2018 cosmological parameters into CAMB to generate a theory shape spectrum

Maximum likelihood parameter estimates are calculated for                                simultaneously

2103.13334SPIDER-1

Modeling Foregrounds with Template Subtraction

For XFaster
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2103.13334SPIDER-1 Results
SPIDER-1
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Time-Ordered Data

Cleaned Data

Frequency Maps
in 4 indep. chunks

Foreground Cleaned 
Bandpowers

Foreground Results:

● For 90 and 150 GHz 
separately

● Dust templates with 353 
and 217 GHz

Cosmological Result:

● Feldman-Cousins and 
Bayesian limit

● Pipeline discrepancies 
and error discussion

Flag noisy 
times and filter

bin timestreams 
into sky maps

Template (spatial):
XFaster
NSI (PolSPICE)

Harmonic (in ell):
SMICA

2103.13334Analysis Pipeline
Foregrounds
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Spatial Variation from PLANCK
Foregrounds

Commander High-Res Dust Amplitude (Celestial Projection)
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Spatial Variation from PLANCK
Foregrounds

Graybody Model, in ΔTcmb units
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Probing Spatial Variation
Make subregions that better capture spatial variation 
Must be:

● Smooth
● Simply connected
● ~50/50 area

Procedure to generate masks
● Find foreground-informative map
● Make map strictly positive
● Smooth with gaussian
● Threshold

Foregrounds
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SMICA informed SubregionsForegrounds
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SPIDER-1 Sees Spatial VariationForegrounds

preliminary
3.5 σ

Foregrounds and Intensity 
papers coming soon! 
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SPIDER-2
SPIDER-2

SPIDER 2:     2022-23

● 6 telescopes 
2 x 95, 1 x 150, 3 x 280 GHz

● About 8 days of data
● Data recovered and low-level 

work starting now
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280 GHz Telescopes
SPIDER-2

2012.12407, 1711.04169, 1606.09396

Transition Edge Sensor island

Orthomode 
transducers

Feedhorn Array

focal plane of 
280 telescope

420 mK              1.6K
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Flight!  Dec 22-Jan 7 2023
SPIDER-2

Photo credit: Scott Battaion

Sasha Rahlin

Rose McAdoo
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In-Flight Statistics
SPIDER-2

A. Rahlin A. Rahlin

● 8 days of data
● Similar sky region and area to SPIDER-1
● All 280 GHz receivers fully on science 

transition
● Nearly half the photons seen by detectors 

are CMB SPIDER-1

SPIDER-2
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Summary
● Ballooning is a challenging but rewarding platform

● Foregrounds are hard
○ Future polarization measurements need better dust models
○ Foregrounds and Intensity papers coming out soon

● Second flight a success!
○ More integration time, better handle of systematics      better constraints
○ Unparalleled 280 GHz maps for better foreground modeling in future 

experiments
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Thank You!

Scott Battaion, Kaija Webster, Pam Melroy 
(Nasa Deputy Administrator), Rose McAdoo 

By Richard Bose
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Backup Slides



Second Flight Hardware: Cryo Runs
Spring 2020 (Princeton) Summer 2022 (Palestine) Winter 2022 (McMurdo) 
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XFaster Algorithm
Uses a fiducial full-sky model and iteratively solves for bandpower deviations

Generalized covariance matrix

Signal and Noise covariance

Bandpower deviation of bin b

Binning operator

Noise scaling parameter

Mean spectrum of noise sim ensemble

Bandpower kernel

Mode coupling matrix

Linear filter function

Beam function

Shape spectrum (fiducial)

2104.01172

Foregrounds
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Second Flight Scan Strategy: Pointing Hardware

Pointing in AZ
● Reaction wheel
● Pivot motor

Pointing in EL
● 2 EL drives
● Inline strain gauges
● 2 EL sensors

Other sensors
● 2 Star cameras
● Inner and outer frame gyros
● Sun sensor
● Magnetometer
● NASA GPS

https://docs.google.com/file/d/171L5Htm_qdZC82rqz-3sDPmw4yN685If/preview
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Second Flight Scan Strategy: Scan Simulation

We control:
● Quad box
● Scan track pt.
● Half scans per EL step
● Scan velocity

We don’t control:
● Date (sun)
● Min and max EL
● Balloon Latitude
● Galaxy
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Second Flight Scan Strategy: Pointing in SPIDER-2

Three latitude pointings
● -78 degrees (McMurdo)
● -82 degrees
● -85 degrees

Schedule of Commands
● Half-wave plate rotation

2x a day
● Fridge cycle

1x a day
● Scanning

by Elle Shaw
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Second Flight Low-Level Analysis: Getting a Unified Dataset

Flight Computer
● frame file 1
● frame file 2
● …

X1 Computer
● frame file 1
● frame file 2
● …

●
●
●

Flight Computer
● dirfile 1
● dirfile 2
● …

X1 Computer
● dirfile 1
● dirfile 2
● …

●
●
●

Unified Dataset (Unifile)
● One nested dirfile
● One time field
● Every field 

available for any 
time
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by John Ruhl

Second Flight Scan Strategy: Integrating with Unimap

SPIDER-1
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B-Mode Tabled Results
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Band details: NET, Map Depth



Finding Sigma r Budget: Varying one Ensemble

Vary SIGNAL, Spider Noise, and Template Noise 
individually and calculate the contribution 26%

58%
16%
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Commander Map Info



CAMB: Code for Anisotropies in the Microwave Background
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