SIMULATIONS OF SEMI-LEADED NEUTRON MONITOR RESPONSE FUNCTIONS FROM LATITUDE SURVEYS

A. SERIPIENLERT AND W. NUNTIYAKUL

On behalf of Thailand research group

OUTLINE

- Introduction
 - Cosmic Rays
 - Neutron Monitor
- Latitude Survey Project
- Atmospheric Simulations
- Detector Simulations
- Results
- Future work

INTRODUCTION: COSMIC RAYS

- Energetic particles or γ-rays from space
- Discovered by Hess in 1912 (Nobel Prize in 1936)
- Ordinary matter accelerated to high energies
 - **p**, ⁴He, ¹²C, ¹⁶O, heavy nuclei and γ , e⁺, e⁻, μ , ν , ...
- Key sources of cosmic rays for Earth's radiation environment:
 - From solar storms (solar energetic particles)
 - From supernova explosions inside the Milky-Way Galaxy (Galactic cosmic rays)
 - From intense events/objects GRB, AGN outside the Galaxy (Extra Galactic cosmic rays)
- Key cause of biological mutation

Image Credit: Cosmic rays_particles from outer space _ CERN.html

INTRODUCTION: STANDARD NEUTRON MONITOR (NM64)

INTRODUCTION: BARE NEUTRON DETECTOR

INTRODUCTION: SEMI-LEADED NEUTRON MONITOR

Latitude Survey Project

Monte Carlo Simulations

FLUKA Post FLUKA Analysis

- Generate atmospheric layer as spherical shell with different properties.
- Here we select 3 atmospheric locations: Hobart, Shanghai and Zhongshan

Secondary Particle libraries from Atmospheric Simulations

Detector Simulations

Table 1: FLUKA simulation statistics: M denotes one million particles.									
No. of simulated particles									
Type	Rigidity 1-10 GV			Rigidity 10-200 GV			Rigidity 200-500 GV		
туре	Hob	Sha	Zho	Hob	Sha	Zho	Hob	Sha	Zho
Atmospheric simulations									
p	10M	10M	10M	1M	1M	1M	1M	1M	1M
α	10M	10M	10M	1M	1M	1M	1M	1M	1M
Library									
n	104441	93771	120957	136508	125494	155272	925016	853698	1029597
p	5163	4523	5955	13486	12147	15443	109524	99484	122149
μ^{\pm}	16592	15304	18988	1149070	1126119	1200135	14247188	14023234	14697068
Detector simulations									
n	1000M	1000M	1000M	100M	100M	100M	100M	100M	100M
p	1000M	1000M	1000M	100M	100M	100M	100M	100M	100M
μ^{\pm}	1000M	720M	743.5M	100M	100M	100M	88.5M	51M	51.5M

Integral Response Functions

Differential Response Functions

DRF Ratio, $N_0 = 1$

The ratios of the leaded to unleaded detectors, represented as $(T_1+T_3)/T_2$, were obtained as a function of cutoff rigidity (P_c) .

The ratios of the differential response function (*DRF*), normalized $N_0 = 1$.

FUTURE WORK

- Run simulation with new version of FLUKA
- Use more atmospheric profiles

More details of this work can be found in

PoS(ICRC2023)1334

ACKNOWLEDGEMENTS

This work was supported by

- National Astronomical Research Institute of Thailand (NARIT)
- Chiang Mai University (CMU)
- PMU-B [grant number B39G660028]
- Center for Information Technology (CIT) team of NARIT and ITSC of CMU for providing server on-demand for simulations.

CHINARE

雪龍2, · ·

Thank you for your attention!

