EXPLORING THE MICROWAVE SKY WITH THE SOUTH POLE TELESCOPE

SASHA RAHLIN

UNIVERSITY OF CHICAGO

Photo: Aman Chokshi

SPT3G COLLABORATION

THE SOUTH POLE TELESCOPE

10-m submm-quality wavelength telescope

- ▶ 90, 150, 220 GHz
- ▶ 1.6, 1.2, 1.0 arcmin resolution

▶ 2007: SPT-SZ

- 960 detectors
- > 90, 150, 220 GHz

▶ 2012: SPTpol

- 1600 detectors
- ▶ 90, 150 GHz
- +polarization

▶ 2017: SPT-3G

- ~16,200 detectors
- > 90, 150, 220 GHz
- +polarization

SPTpol

6x deeper 6x finer angular resolution

BREADTH OF SPT RESULTS

- **CMB anisotropy:** Power spectra and cosmological parameters
- CMB B-Modes: First detection of lensing B-mode polarization; demonstration of delensing for improved constraints on inflationary tensor-to-scalar ratio
- CMB lensing: power spectra; cross-correlations; cluster-lensing mass calibration
- Sunyaev-Zel'dovich (SZ): Diffuse kinematic and thermal SZ effect constraints: bispectrum, pairwise kSZ, patchy reionization
- Galaxy Clusters: First SZ discovery clusters,
 SZ cluster catalog and cosmology
- High-Redshift Galaxies: Discovered population of lensed dusty star forming galaxies
- Transients: mm-wave phenomena (GRBs, FRBs), mJy-level monitoring of 1000s of blazars, AGNs
- Participating in the Event Horizon Telescope

Publications: pole.uchicago.edu

••••

THE SPT-3G 1500 DEG² SURVEY

- SPT-3G 1500 deg² survey will be ~10x deeper than SPT-SZ
- Overlaps BICEP Array, to optimize inflationary constraints from CMB delensing

	Obs. Years	Area (deg²)	95 GHz (uK-	150 (uK-	220 (uK-	
SPT-SZ	2007-11	2500	40	17	80	
SPTpol- 500d	2012-16	500	13	6	_	
SPTpol- 100d	2012-16	100	10	5	_	
SPTpol- 2700d	2012-16	2700	47	28	_	
SPT-3G Main	2018-23 2025-26	1500	2.5	2.1	7.6	
SPT-3G Extended	2019-23	2600	8.5	9.0	31	
SPT-3G Wide	2024	6000	14	12	<i>42</i>	

THE SPT-3G EXTENDED SURVEY

- Additional one-year wide survey to cover all remaining visible sky area (10K total area with existing surveys)
- Overlap with ACT/Planck, mode-bymode cross checks

RAHLIN | SCAR AAA 2023 | 2023 SEPT 21

SPT-3G: DATA QUALITY

~60% observing efficiency in 9-month observing season

Daily camera sensitivity is stable over season

Expect to reach CMB-S4 wide survey depth by end of 2023

A. Anderson, W. Quan, A. Bender

SPT3G: 2018 CMB POWER SPECTRA

- 2018: half season with half of full detector count
- Constraints already comparable to or exceed leading measurements at intermediate scales

Dutcher et al (PRD, 2021)

SPT3G: 2018 ACDM CONSTRAINTS

- Consistent H₀ values between
 T and P spectra when
 evaluated across experiments
- Tightest constraint on H₀ to date
 - 4.1 σ tension with Riess et al
- Further model extensions: N_{eff} , Y_p , $\sum m_v$, Ω_K
 - No clear evidence for any extensions
 - with Planck, reduce volume of parameter space by 1.3-2x

Spectra	Datasets	$H_0[{\rm kms^{-1}Mpc^{-1}}]$		
TT	$\text{SPT-SZ} + Planck + \text{ACT DR4} \ (\ell > 1800)$	68.85 ± 0.97		
TE	$\mathrm{SPT}\text{-}3\mathrm{G}\ 2018 + Planck + \mathrm{ACT}\ \mathrm{DR4}$	67.95 ± 0.94		
$E\!E$	SPT-3G 2018 + $Planck$ + ACT DR4	69.2 ± 1.2		
TT + TE + EE	SPT-3G 2018 + $Planck$ + ACT DR4	67.49 ± 0.53		

Balkenhol et al (PRD, 2021)

SPT3G: 2018 CMB LENSING CONSTRAINTS

- $A_L = 1.020 + 0.060$, consistent with others and ΛCDM
- Constraint on σ₈ consistent with Planck and SPT-SZ/SPTpol
- With BAO, 1.6-1.8σ tension in S8 with low-redshift surveys
- Independent SPT3G-only constraints on Ω_K, Ω_Λ, ∑m_v

Pan et al (2023)

SPT3G FORECAST: CMB POWER SPECTRUM

Improve S/N of CMB power spectra by factors of > ~10 at ℓ > 2500 over current constraints

J. Henning

SPT3G FORECAST: ACDM CONSTRAINTS

- SPT-3G alone will do as well as Planck on most parameters
 - e.g., σ(H₀)=0.27 km/s/Mpc
 from SPT-3G-Ext-10K lensed
 TT,TE,EE spectra
- SPT-3G gives ~independent cosmological information from high-{ CMB polarization spectrum
- SPT-3G Main + Planck will improve most parameters >2x over Planck alone
- Extended survey provides >3x
 improvement over Planck alone

	ΛCDM				ΛCDM +1			ΛCDM +2			
	$\Omega_b h^2$	$\Omega_c h^2$	H_0	n_s	$A_{ m s}$	FoM	$N_{ m eff}$	$Y_{ m P}$	Ω_K	$\Sigma m_{ u}$	$N_{\rm eff}$
$\sigma(Planck)/\sigma(Main)$	1.25	1.28	1.50	0.68	1.17	4.5	_	_	_	_	-
$\sigma(Planck)/\sigma(\text{Ext-10k})$	2.32	1.68	1.96	1.40	1.40	161	_	_	_	_	-
$\sigma(Planck)/\sigma(\text{Ext-10k+}Planck)$	2.72	2.15	2.44	1.83	1.67	283	_	_	_	_	-
$\sigma(Planck)/\sigma(\text{Ext-10k+}Planck)$	_	-	-	-	_	-	2.88	2.99	3.13	2.05	2.93

S. Galli

SPT3G FORECAST: CLUSTER COSMOLOGY

- SPT was first to discover high-redshift clusters via thermal SZ effect
- SPT3G cluster survey extends to higher redshift and lower mass
 - >4000 confirmed clusters
 - >500 high-z clusters detected at
 >99% purity
- Probe tension in S8 between local measurements and inference from CMB
- Cross-correlation with DES (VRO-LSST) will improve constraints on S8 by 2x (3x)

L. Bleem

- Exploit CMB observating cadence: repeated daily imaging of large sky area at multiple frequencies
- Provide useful probe of high-energy astrophysics (AGN, GRB, FRB, stellar flares, ...)
- No dedicated transient surveys exist between 10GHz and IR frequencies
- Large discovery potential with online alert system

- First results: 15 transient events in 2019 dataset
- Most are stellar flares (likely magnetic reconnection events?)
 - up to 2 Jy in brightness, flares as short as 20 min, some flare more than once

Guns et al (ApJ, 2021)

- First results: 15 transient events in 2019 dataset
- Two extragalactic long-duration flares
 - Super variable AGN? Something else? Follow-up in progress

4x / 15x increased flux relative to 2019 average

CMB-S4 Deep / SPT-3G 10σ daily limit

Lots of discovery potential!

Eftekhari et al (2021)

EVENT HORIZON TELESCOPE

FUTURE DIRECTIONS

~5-year gap between end of SPT3G and start of CMB-S4

 SPT3G+
 proposed to utilize the SPT
 submm-quality
 telescope during
 the gap

 Focus on higher frequencies

SPT3G+ SCIENCE

Recombination

First detection of CMB Rayleigh Scattering, new probe of cosmic expansion history, and cosmology. (Dibert et al [2205.04494], Zhu et al [2205.04496])

Reionization

- Constrain duration and redshift of reionization via kSZ
- Growth of galaxies and clusters
 - Detect growth of massive galaxies and clusters from 1 < z < 9</p>
- Dust and star formation in the galaxy

SPT3G+ INSTRUMENT

High-frequency (220/280/350 GHz) receiver of MKIDS

SPT-SLIM: LINE INTENSITY MAPPING PATHFINDER

- On-chip spectrometers
- Install on secondary mount point
- Observe for one austral summer season

J. Kim, et al. 1805.09346

SUMMARY

SPT-3G survey is ongoing

- First results from 2018 season published, with impressive CMB sensitivity and performance at large scales
- SPT-3G science publications from 2019-2020 seasons coming soon
- Rich astrophysical transient program

SPT-3G science forecasts through 2026 season

ACDM constraints at least as good as Planck on most cosmological parameters
 With Planck, factor of ~2-3x improved constraints on N_{eff} and neutrino mass
 With BICEP Array, factor of ~10x improvement on current BK15 tensor-to-scalar ratio constraint

Future plans for CMB science at the South Pole

- SPT3G+ to enable first detection of CMB Rayleigh Scattering, and to constrain reionization via the kSZ effect
 - CMB-S4 coming online at the end of the decade