BICEP/Keck: Constraining primordial gravitational waves with CMB polarization observations from the South Pole

Marion Dierickx SCAR AAA, Svalbard, September 21st 2023

CENTER FOR
ASTROPHYSICS

HARVARD & SMITHSONIAN

Photo credit: R. Schwarz

History of the Universe

History of the Universe

History of the Universe

CMB Polarization

CMB Polarization

CMB Polarization

Challenge #1: The signal is very weak

The signal is parameterized by the tensor-to-scalar ratio *r.* Its exact amplitude is unknown.

To place meaningful constraints on primordial gravitational waves, we must be able to detect a signal at the nanokelvin level.

CMB telescope sites: 1960-2016

Slide adapted from D. Barkats

From CMB experiment database at lambda.gsfc.nasa.gov

CMB telescope sites: last ~decade

High-precision CMB temperature and polarization experiments: past and current

CBI, QUIET

ACT, ACTPol, AdvACT PolarBear, Simons Array, CLASS

ACBAR BICEP1, BICEP2, BICEP3 DASI, QUAD, Keck Array, BICEP Array SPT-SZ, SPTPol, SPT-3G

Slide adapted from D. Barkats

Atmospheric transmission

Precipitable Water Vapor (2006-2016 average) from MERRA2 (NASA)

South Pole Dark Sector

South Pole Dark Sector

- Extremely dry.
- High altitude (9,300 ft = 2,800 m, most of it ice).
- Lack of day/night cycles makes for a very stable atmosphere.
- Southern sky observable for 6 months of continuous darkness.
- Minimal radio frequency interference.

South Pole Dark Sector

- Extremely dry.
- High altitude (9,300 ft = 2,800 m, most of it ice).
- Lack of day/night cycles makes for a very stable atmosphere.
- Southern sky observable for 6 months of continuous darkness.

DASI

QUAD

Keck Array

BICEP Array

IceCube Lab

• Minimal radio frequency interference.

South Pole Telescope: SPT-SZ, SPTPol, SPT-3G

BICEP1

BICEP2

Anatomy of a BICEP CMB polarimeter

The cryostats are designed to be as compact as possible, with sufficient angular resolution to observe degree-scale features.

Hundreds/thousands of orthogonal detectors pairs. Take the difference to reconstruct polarized signal.

The on-axis, refractive optical design allows the tube to rotate around the boresight for polarization modulation and systematics cancellation.

Focal planes are getting larger in order to pack more detectors per receiver.

BICEP Array 2019-20 deployment

Three months of Antarctic summer to perform:

- Keck Array demolition
- BA mount installation
- BA1 receiver assembly
- Full system integration

60,000 lbs of cargo, equivalent to 3 dedicated LC-130 Hercules flights to the South Pole.

- ~30 personnel:
- 2/3 scientists
- 1/3 contractors

BA1 (30/40 GHz) instrument highlights

Optics

Alumina absorptive IR filter, AR-coated with laser-diced epoxy.

Internal absorptive baffling for scattering control.

Polyethylene lenses, AR-coated with expanded Teflon. 550mm clear aperture.

Challenge #2: Galactic foregrounds

Two known additional sources of "foreground" E- and B-mode signals:

Synchrotron: Dominates at low frequencies. Comes from electrons spiraling in Galactic magnetic fields.

Dust: Dominates at high frequencies (IR). Comes from small interstellar dust grains aligned by magnetic fields.

Multi-band observations are the key to component separation

Black lines: atmospheric transmission Colored lines: BICEP Array observing bands

Superconducting detector technology that scales in frequency (using the same optics) enables modularity of the telescope design.

Camera inserts at 30/40 GHz and 150 GHz

Analysis

The most recent published analysis (with data up to 2018) is shown in red.

Preliminary analysis adding the first year of 30/40 GHz data (2020) is shown in a black line.

Analysis

The most recent published analysis (with data up to 2018) is shown in red.

Preliminary analysis adding the first year of 30/40 GHz data (2020) is shown in a black line.

Synchrotron radiation is still undetected; the upper limit is ____ pushed further down.

Progress in the measurement

Challenge #3: Gravitational lensing

Conclusions

- The quest to constrain inflationary gravitational waves continues:
 - Using data up to 2018 gives $r_{0.05} < 0.036$ (95%), $\sigma(r) = 0.009$.
 - This result rules out two entire classes of previously popular inflation models (monomial models and Natural Inflation).
 - Proven systematics control at degree angular scales.
- Looking ahead:
 - Stage 3 deployment is ongoing: Projecting σ(r) < 0.003 by the end of the full BICEP Array survey ca. 2027.
 - Delensing with SPT-3G data is under development.
 - Next Generation CMB Experiment: CMB-S4.

Backup slides

BICEP3 receiver inside control room

"Membrane": window N2 purge

Pressurized volume of N2 above vacuum window Regulation panel for N2 flow ——

BOPP membrane

Ultrathin vacuum windows

See Eiben et al. SPIE Proceedings ArXiv: 2208.01088

Fig. 6: [Top] Woven HMPE sheet, pre-lamination. [Top right] Example layer stack of HMPE and LDPE. Varying the amount of LDPE varies the thickness of the final laminate window. [Right] Laminate window on a BICEP Array cryostat, with people for scale.

Deployed on BICEP3 and BICEP Array in 2022-23 austral summer:

- Joining forces with the 10-meter South Pole Telescope, which provides high-resolution maps of the small-scale polarization pattern.
- Recently achieved the first demonstration of reducing the uncertainty on the tensor-to scalar *r* through "delensing" (arXiv:2011.08163)
- Develop path forward for CMB-S4: infrastructure, data and methods.

CMB-S4 will be able to detect primordial gravitational waves for r > 0.003. It will probe energy scales far beyond the reach of any conceivable collider experiment, and a detection would point to inflationary physics near the scale associated with grand unified theories. Superconducting detector technology that scales in frequency is the key to multi-band observations.

