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The IceCube Neutrino Observatory

IceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW—-Madison

Digital Optical
Module (DOM)

5,160 DOMs
deployed in the ice

50m

2450 m

Amundsen-Scott South
Pole Station, A

A National Science Fou
managed research facilit

86 strings of DOMs,
set 125 meters apart

60 DOMs
on each
string

DOMs
are 17 _l:
meters
apart =
\_/

Each DOM is

equipped with a
‘g 10” PMT and 12
@ LEDs

Antarctic bedrock 4
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(Glacial ice as detection medium

* In particle physics one usually carefully designs the detection medium

* Deploying into natural glacial ice we don‘t have that luxury
(predecessor experiment (AMANDA-A) limited as scattering at
1 km depth was far worse than predicted at the time)

* The optical scattering & absorption properties directly
Impact physics performance
* Trigger performance, angular reconstruction, energy
reconstruction, particle identification, ...

— we need to calibrate the detection medium In-situ

810 m

1000 m

1150 m

2350 m




The Glacier @ IceCube
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e Compacted snow up to 100'000 years old

* Absorption length ~100m,
one of the least absorbent known solids

* Above 1300m air bubbles dominate scattering

* Below 1300m air bubbles get incorporated into
crystal structure forming transparent craigite

e Scattering (~20m eff.) dominated by
Impurities and correlated to absorption
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o — Three-component model fit

® Laboratory ice

L 180-186 nm: Minton [1971]

250-400 nm: Perovich and Govoni [1991]

*? 400-1400 nm: Grenfell and Perovich [1981] t‘

South Pole ice

% o 830m
© 970 m
é,& '} = 1655 m
0.01L \ Y v 1675 m

—
— H‘#& ;/é 4 1755 m (peak B)
| N _I

o b by by b b b L L
100 200 300 400 500 600 700 800 900 1000

wavelength [nm]|

6



The Glacier @ IceCube

e Compacted snow up to 100'000 years old

* Absorption length ~100m,
one of the least absorbent known solids

* Above 1300m air bubbles dominate scattering

* Below 1300m air bubbles get incorporated into
crystal structure forming transparent craigite

e Scattering (~20m eff.) dominated by
Impurities and correlated to absorption
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e Compacted snow up to 100'000 years old

Eg D salt
. < i, ____Minerals
* Absorption length ~100m, 09t A———_—
one of the least absorbent known solids osl average dus el

* Above 1300m air bubbles dominate scattering 0‘75

* Below 1300m air bubbles get incorporated into
crystal structure forming transparent craigite

T~ soot

) Scatterlng (~20m eﬁ) dominated by 2(;0' Y300 #0500 600 '7(3(;\?\?00

Impurities and correlated to absorption wavelength [nm]
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a()) = ZNj o dr |A;(r, A, m_,)de

Tmin
Absorption length to be obtained Summing over impurity densities
Per component size distribution Per component Mie cross sections

* Given the number densities, size distributions and complex refractive indices
of all impurities the
e absorption length, scattering length and angular deflection function
* and their scaling with wavelength
can be calculated from first principle Mie theory



Optical Signal

The DustlLogger
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* Horizontal fan of light emitted into ice

* Scattering centers can deflect light into PMT
— Signal proportional to density of scattering centers

* Yields high resolution stratigraphy but not absolute absorption & scattering lengths

"”‘i DOI: 10.3189/2013J0G13J068
g lceCube
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Milankovitch Cycles

e Stratigraphy can be understood when
considering the Earth’s climate history

e Climate is governed by periodic changes
In Earth's orbit (Milankovitch Cycles)
.. : : O 2 | Petit et al..
* The overall incident sun intensity hardly g o / P
changes, but the distributions on the g | | M;jz “ﬁgﬁ Y
. NIy Ll oy A A q280
hemispheres changes (most landmasses -7 W\:,W {;n-w, -\ﬁ;ﬁ/,'.,,mnﬁu‘, ‘L LTANTU YA
on the Northern Hemisphere) Y (7 s
 Cold, dry climate periods (stadials) 3” N“ M |
feature high impurity concentrations °°-30 Q;:j W, 150'““;‘;;’ ;00 ATV .

Thousands of Years Ago
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Light curve sensitivity

S1D50 flashir)g receiyed by 58D55

« Observation of photon 12 ——
arrival time distributions T simalation
from pulsed light sources, 10¢ ﬁ

allows for measurement of
absolute absorption & scattermg 8}
lengths

Absorption driven

C
% 6 EachDOMis /
- Normalization independent, < equipped with
but observations at different 4}
distances help
p!
* Distributions badly modeled by ~— Scattering driven
analytic random walk 0 . . . ‘ . ‘
_, full simulation needed 0 200 400 600 800 1000 1200 1400

time [ns]
12
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Photon propagation & likelihood analysis

Initialize photon
with distance to absorption

!

next scattering

Dice distance to “

10>

10
1

10

Deflect by random angle
from scattering function

Step through layers until
absorbed, scattered or detected

If scattered

If detected
or absorbed

Kill photon

102 ¢

1
10, |
>0

10}
3 F
\\\\h\\\l‘\l

2000
time from the flasher event [ ns ]

(63,.27) --> (72.28)

—spice ... data

0

1000

An event contains average binned waveforms

— This is compared against MC simulation

—InL = Z s; In Si/. ~ +d;In d /;nd + !

LL?,

S

Hg

20
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i
) bl
s

I sums over all emitting & receiving DOMs and their time bins
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Layered ice model (SPICE)
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0.20

SPICE 3.2.1
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* While the ice surface is flat, the underlying terrain is fairly mountainous

 Valleys only filled in gradually
- Ice layers at great depth are offset / tilted

of
(o]
=
o
o
(o]
0
Q)
sl

ice cores

E ~—— glacial bed

7

rock cores

bedrock
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* While the ice surface is flat, the underlying terrain is fairly mountainous

* Valleys only filled in gradually . Detzmon

oL Tik1221m

- Ice layers at great depth are offset / tilted

IceCube
Hole#{year)

50 (06-07)

KVU 66 (05-0G)

}\ 21 (04-05)

Wi\ e

Optical Signal
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1 I_ '] '] '] I '] '] '] '] '] I '] '] '] [ —")
1400 1600 1800 2000 2200 2400
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Rivers of ice

aphic South Pole

Geog¥

Rostd Amundsen
e 1108

sised amd

Velocity (m/yr)
1 10 100 1000

E. Rignot, J. Mouginot, B. Scheuchl, Ice Flow of the Antarctic Ice Sheet;

Velocity Data:
Science 333, 1427-1430 (2011).

Surface Elevation Data:
. Fretwell et al., Bedmap2: improved ice bed, surface and thickness
datasets for Antarctica., Cryosphere 7, 375'- 393 (2013).

Visuallz{tion by /u/GibberishWord
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* Observed charge from LED flashers depends on orientation
of receiver DOM with respect to emitter DOM
* Maximum intensity seen along the local ice flow direction

2_

: r I H } ‘
~150° —100° —50° 0° 50° 100° 150°
Azimuth angle from emltter towards receiver 19

* In 2013 discovered &
Implemented as a
modification to the
Mie scattering function
but never achieved
good data agreement...

Tilt axis -

-u.
g ——
o ———

Light intensity ratio Data/MC
— Flow axis
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The birefringence explanation s
 Continued refraction and P9 102292301 5550854,

0 degrees to flow 20 degrees to flow 45 degrees to flow 65 degrees to flow 90 degrees to flow

reflection on boundaries : :

of birefringent crystals: e .1

* Diffusion which is o 2
-1.1 0.8 08 -04 02 rcllvnz 04 06 DB 08-06-04-02 lgl“ 0.2 04 06 08 0808 -04 02 ﬁ“ 0.2 04 06 08 0.8 06 0.4 -02 ﬁiv 02 0.4 06 0B 0.8 06 -04 -02 Hv 0.2 04 0.6 08 1

largest along the flow
* A small deflection
towards the flow axis

 Diffusion & deflection given
by average crystal size
& shape

No Birefringence _ Birefringence

20



Birefringence




The birefringence explanation

Detailed modeling of birefringence
allows to deduce ice cyrstal
properties (average shape & size,
c-axis distributions, ...) as relevant
to ice flow modeling using data from
IceCube sampling individual photons
at 125 m increments

For more details see;

n of ice crystal properties at the S
! estima e cr) s outh Pole usi
LED calibration data from the IceCube Neutri Ohserv-ltorjmg
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Quality & open issues L

DOM pairs on nearby strings along flow axis

* Using the full-model described above, T ooty
we achieve an unprecedented data-MC ;.0 scattering
—— absorption

agreement

—— birefringence

absorption and
birefringence combined

 BUT the LED data is insufficient to
unambiguously determine the large
number of parameters involved

2-10%

photon count/ 25 ns

* And the modeling still requires a
number of fudge-factors 1105
(for example inclusion of an ad-hoc
absorption anisotropy part)

0-10° : : : : : ‘ ‘ ‘
500 600 700 800 900 1000 1100 1200 1300 1400

time [ns] 23
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The case for the IceCube Ugrade

o IceCube Upgrade

L ] . E
Il. Improve IceCube (ice) calibration N
|. Reduce angular uncertainty — better point source sensitivity
Il. Reduce known systematics L
— allow for more aggressive cuts in a variety of analyses el '[g

IceCube-Gen2  /

] -:'."_:-:'5-.!:-_.'.:‘_.'.
doeniniin ey

1 km
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[ceCube Upgrade Detector Layout *"**** X,
- 1400-
L 1000m : C
7 new strings ; . - PO L
at ~20 m spacing . I 100~ LDl
,/,/l ° \\ el : ‘ . * 17004 E .....
3_ m v_ertlcal spacing ¢ ° sood £} 1
(in science region) between | * oo
90 optical sensors per o .O® . _ o
string L ® ° . o : L
\ [ ] o
o ® / l &2100-
Located inside . 2200- ‘ | ]
IceCube-DeepCore S 7m | 2300 | | '
m 7m b
| | S i
Sparse instrumentation 5 5 ol
above and below current .o .o 0O i
IceCube depths ceCube  DeepCore  Upgrade 1450m - 2100m - 2150m
Instrumented Depth 2700
o’&c"@%\ RSP
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Calibration instrumentation

Acoustic POCAM:
calibration system: A1t isotropic light source for relative
Acoustic emitters for DOM efficiency, hole ice and
independent geometry general bulk ice studies

calibration

10 nanosecond LED flashers per module
— new default system for ice studies

Upgrade Camera system:
Based on success of hole ice cameras,
several low-cost cameras per module
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Pencil beam in the Upgrade e 20 "8

S$36D22 - S81D5

— Birefringence anisotropy
—— Scattering anisotropy

=
o

o wher]

109 emitted photons,
LED Wheel Output Wheel 65926 photons detected at maximum
Motor Motor 0 6 A7 h 125.0 ‘% . -
(e colmators S el®ree’
o | 148.1e, -

Motor Control
Board

o
I

Output Monitoring Board I

N Ice Layer tilt direction
225° SW

o
N

Ice flow direction
41° NW

[t e |

Relative Intensity (relative to head-on)

o
o

50 100 150 200 250 300 350
Azimuthal emission direction [deg] 7

41t steerable, ns, collimated light source
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Summary a8

* |ceCube is a unigue astroparticle physics experiment / neutrino telescope
instrumenting a km?® of deep Antarctic ice

 Calibration of the ice optical properties as required for event reconstruction
has matured to a level where it is informative to glaciology / material science:

* |ce intrinsic absorption * Englacial heterogeneities (layer undulation)
* Impurity stratigraphy * |lce microstructure and photon deflection

\V 4

Thank you for your attentlo 0l
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