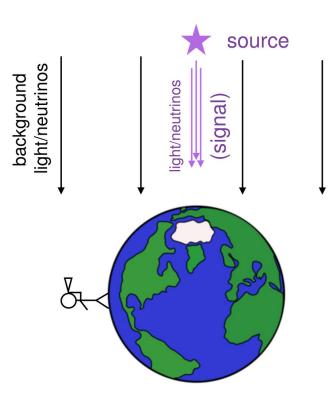

Point Source Likelihood Techniques

"Finding Needles in Haystacks"

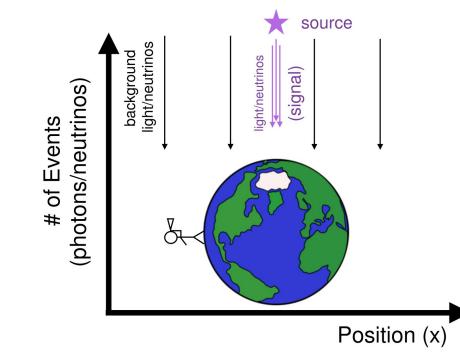

Jesse Osborn, IceCube Summer School 2023 (Copied from IceCube Bootcamp 2022)

The Problem

- Astronomy would be easy if we didn't have background
- For some messengers (high energy photons, neutrinos) we can't turn backgrounds off, but we still want to find sources.

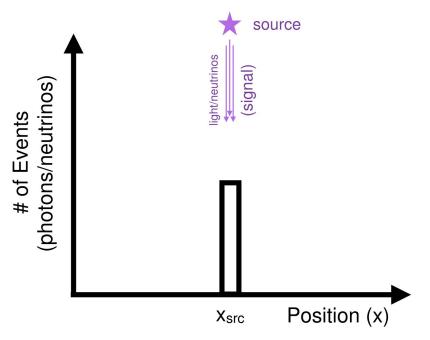
How do we find sources on top of background?

A few definitions


- <u>Signal</u> is a particle that came from the source you're looking for
- Background is a particle that did not come from the source (but looks identical to a particle emitted by the source)

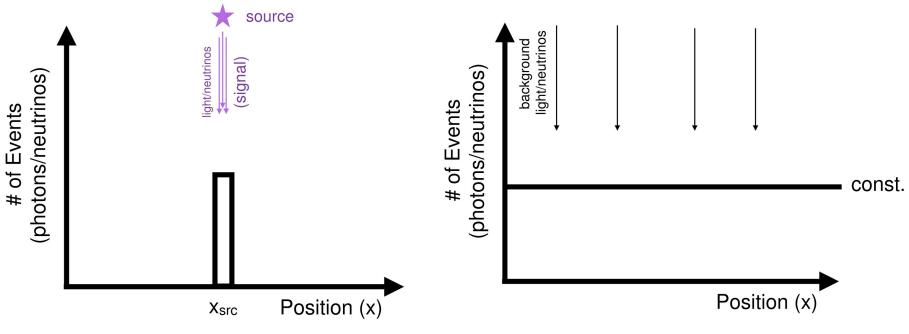
Example: a photon or neutrino with same energy as one from the source

• **Event** a detected particle. Can be a photon, neutrino, etc.

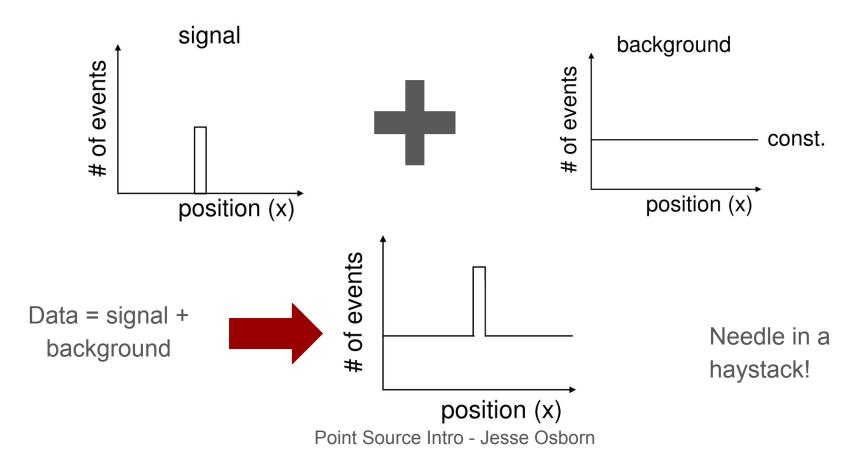

What can we do? Start with spatial distributions:

What would a signal look like in our detector? (Specifically, its spatial distribution)

Spatial Distributions: Signal


What would a signal look like?

Spatial Distributions: Signal and Background


What would a signal look like?

What would our background look like?

Point Source Intro - Jesse Osborn

Total Spatial Distribution

Formalism: Probabilities

Now that we know what signal & background distributions look like, we can formulate them in terms of probabilities:

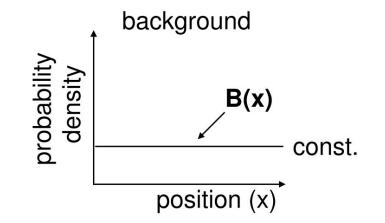
Probability is the chance of getting a given result out of the total number of outcomes.

- \rightarrow ranges 0 to 1 (never to always)
- \rightarrow sum of all outcomes must be 1

This way we can ask the question: what is the probability that our data are consistent with **background + signal** versus the case of **background only**?

 \rightarrow Lets us quantify if there is a source in our data

Probability density: Signal

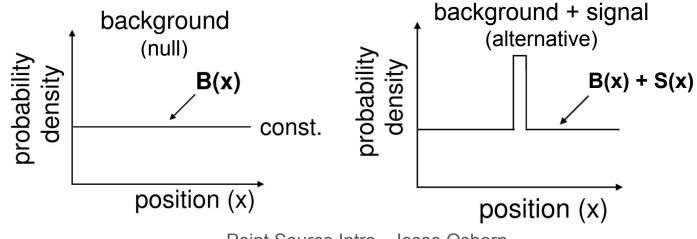

Ok, let's turn our distributions of events into **probability densities** (this means to scale our probabilities such that integral of the distribution is 1)

S(x) = probability density of finding signal at x S(x) dx = probability of finding signal within dx of x S(x) dx = probability of finding signal

Probability density: Background

B(x) = probability density of finding background at x

In astronomy, we typically work on the surface of a sphere, so our uniform $B(x) = 1/4\pi$

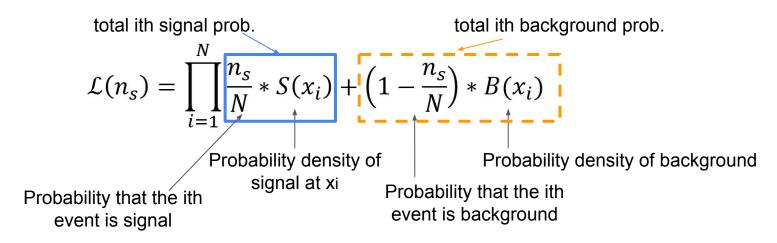


Looking for a signal: Hypothesis testing

Null: All events are isotropically distributed and background-like (no signal events)

Alternative: Events are clustered

- Can be clustered in either time or space
- Can follow a particular expected source distribution (spatial prior/extended source we'll talk about these in a few slides)



Point Source Intro - Jesse Osborn

Bringing it all together: the likelihood function

For a dataset with:

- N total events (known)
- **n**s signal events (**unknown**)
- \mathbf{x}_i is the position where we detect the ith event (i \in [1, N]) (known with error)

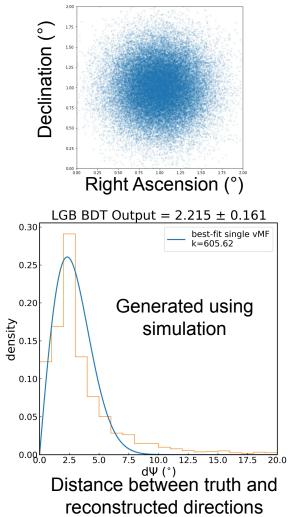
The best estimate for the true value of ns is the value which maximizes the likelihood.

How do we use the likelihood in an analysis?

Working with ratios of likelihoods has some nice statistical properties.

Using the **log of the likelihood** allows us to add instead of multiply, and the log likelihood is maximized at the same place as the likelihood function.

Then we can define our **Test Statistic (TS).** Finding the value of n_s which maximizes TS is equivalent to maximizing the likelihood. TS = 0 means consistent with background only, while high TS values (~25) can be proof of a source.

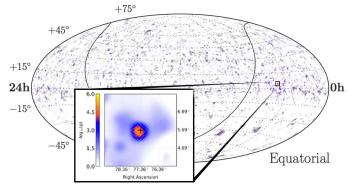

$$TS = 2\log\left[\frac{\mathcal{L}(n_s)}{\mathcal{L}(n_s=0)}\right] = 2\sum_{i=1}^N \log\left[\frac{n_s}{N} * \frac{S(x_i)}{B(x_i)} + \left(1 - \frac{n_s}{N}\right)\right]$$

Brief overview of different source types we look at, and the collaboration-specific code packages we commonly use

Point Source Searches in IceCube

Angular Error Reconstruction

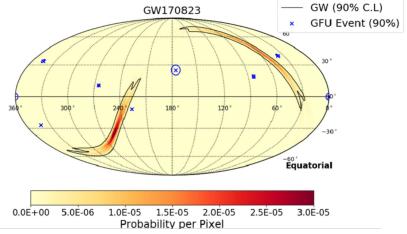
- Do not have perfect reconstructions of our events
- Goal: estimate the true PSF
- Point Spread Function: function that describes the distribution of distances between the reconstructed and true direction
- Usually simplify and use a 2d gaussian (more formally: Kent/von Mises Fischer)
 - We know there are errors to this approximation
- Have now created more advanced methods to approximate PSF (see SkyLLH)



Nu-sources code packages

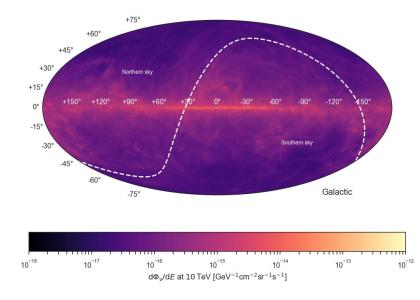
- <u>Skylab</u> / <u>csky</u> / <u>SkyLLH</u> / <u>FlareStack</u>: likelihood frameworks for point source analyses
 - Examples for each of these codes in the docs/ folders on GitHub
 - Many people start with csky
 - Csky has multiflare stacking, SkyLLH has KDE PSF modeling
- grbllh / psLab: legacy LLH code
- **<u>FIRESONG</u>**: simulation package for extragalactic neutrino sources
 - Examples in notebooks/ folder on GitHub

Source types: Point Sources


- Looking for a single, delta-function like source in our data
- Often do this by comparing IceCube data to a particular source (or catalog of sources), or taking a specific dataset and doing a Hotspot scan or all-sky scan
 - Hotspot scan (or all-sky scan): searching across the entire sky for the hottest spot in our data

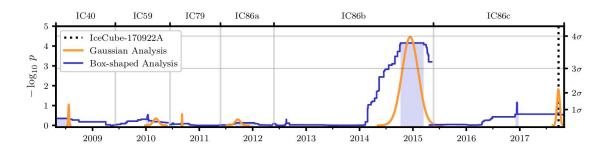
Example: TXS 0506+056, <u>from the point source</u> <u>follow up wiki</u>

Source types: Spatial Prior


- Searching for a point source in a localization region (sometimes called a spatial prior)
- Still looking for a delta function-like point source, but we have a probability region to search for it
- Examples: gravitational wave follow ups, using sources with spatial uncertainty (e.g. CHIME FRBs)
- Do this by adding a spatial weight term to our likelihood (note that w_L is less than 1. so the log is negative): $TS' = TS + 2\ln(w_L)$

M. G. Aartsen et al 2020 ApJL 898 L10

Source types: Extended source


- Looking for a source that emits more widely (not a delta function)
- Example: Galactic Plane Diffuse Neutrino Emission, Extended TeV Gamma Ray Sources, Nearby Galaxies

Fermi π 0 model of neutrino emission in the galactic plane (based on Fermi-LAT diffuse gamma-ray π 0 contribution)

Other types of searches

- Time-dependent search looking for emission with a particular time window (usually the time window is either theory driven, or based on maximizing our sensitivity, or a combination of both)
- Time-integrated search uses many years (or entire livetime) of data
- Flare search looking for multiple events corresponding to a flare in our data
- Template search looking for emission corresponding to a template

Plot stolen from Will Luszczak, <u>Multiflare</u> <u>stacking applied to</u> <u>TXS 0506+056 flares</u>

https://github.com/jessiethw/summer_school_examples/tree/main/point_sources

Point Source Example