

1

Analyses in IceCube

Hannah Erpenbeck

IceCube Summer School, 8th June 2022

*Content shamelessly "borrowed" from previous year's talks + other talks of collaborators

Working Groups in IceCube

Science in IceCube

IceCube does a lot of science!

- → Organization into Working Groups (WG)
- Each WG group covers one large physics goal
 - Some have a slight overlap in interest
 - → Communication between WGs
- You will interact with your WG the most (in weekly or biweekly calls)
 - listen to other's work
 - present your analysis, updates on your work
 - receive feedback, etc.
- Majority of the details are discussed in the WGs
 - Only a subgroup of the collaboration will discuss an analysis in detail until it is ready to be presented to everybody
 - → Analysis Call

Working groups

Ana	lysis	
Oscillations	(calls)	(mail)岱
Cosmic rays	(calls)	(mail)료
Diffuse/Atmospheric ν	(calls)	(mail)岱
Supernova	(calls)	(mail)岱
Beyond the Standard Model	(calls)	(mail)岱
Neutrino Sources	(calls)	(mail)团

Technical Working Groups							
Reconstruction	(calls)	(mail)岱					
Realtime	(slack)团	(mail)료					
Calibration	(calls)岱	(mail)岱					
Detector & Simulation							
Simulation Simulation Production		(mail)岱					
Tools for higher le	vel phy	sics					

Each WG has

- a wiki page
 - with links to the phone calls
 - With summaries of current ongoing analyses
- Two working group leads and a technical lead

R&D pi	rojects	
Acoustic	(calls)	(mail)岱
AURA		
RASTA	(calls)	(mail)岱
PINGU		
Proton Decay		
Simulation		
IceCube Extensions		(mail)岱
IceAct	(calls) <mark>ය</mark>	
Legacy wor	king grou	ps
Neutrino Oscillations	(calls)	(mail)&
Low-energy ν	(calls)	(mail)岱
Extreme energies	(calls)	(mail)岱
Tau & Composites	(calls) 岱	(mail)&
Exotic particles	(calls)	(mail)岱
WIMPs/Dark Matter	(calls)	(mail)岱
Transients	(calls)	(mail)럆
Point sources	(calls)	(mail)岱
Cascades/Taus	(calls)	(mail)弦
Muons	(calls)	(mail)&
Verification		(mail)岱

Working groups

Anal	ysis		Technical Wor	king Grou	ps		R&D p	rojects	
Oscillations	(calls)	(mail)岱	Reconstruction	(calls)	(mail)岱	- · · · ·	Acoustic	(calls)	(mail)岱
Cosmic rays	(calls)	(mail)료	Realtime	(slack)团	(mail)团		AURA		
Diffuse/Atmospheric $ u$	(calls)	(mail)岱	Calibration	(calls)🗳	(mail)굡		RASTA	(calls)	(mail)岱
Supernova	(calls)	(mail)岱					PINGU		
Beyond the Standard Model	(calls)	(mail)岱	Detector & S	Simulatio	ı		Proton Decay Simulation		
Neutrino Sources	(calls)	(mail)岱	Simulation		(mail)岱		IceCube Extensions		(mail)岱
			Simulation Production				IceAct	(calls) 럆	
					Legacy working groups				
							Neutrino Oscillations	(calls)	(mail)岱
							Low-energy ν	(calls)	(mail)岱
							Extreme energies	(calls)	(mail)岱
Each WG has	5						Tau & Composites	(calls) 岱	(mail)岱
							Exotic particles	(calls)	(mail)岱
 a wiki page 	و						WIMPs/Dark Matter	(calls)	(mail)岱
	-						Transients	(calls)	(mail)岱
• with links	to the	e phone calls					Point sources	(calls)	(mail)岱
		-					Cascades/Taus	(calls)	(mail)岱
 With sumr 	marie	s of current o	ngoing analyses				Muons	(calls)	(mail)团
- I'	_						Verification		(mail)岱

Two working group leads and a technical lead

Working groups

Analyses in IceCube

Selected analyses from each working group*

*Due to limited time, I will not cover everything. Apologies if I missed out your favorite analysis!

Cosmic Rays WG

- WG focuses on analyses with cosmic-ray air showers (see Paolo's talk yesterday)
 - When cosmic rays hit Earth's atmosphere, a particle air shower is created
- Uses IceTop (cherenkov tanks) + in-ice detectors
- Works on CR energy spectrum, CR composition, CR anisotropy, sun+moon shadow, seasonal variations (of atmospheric neutrinos)
- Uses MCEq, CORSIKA, FLUKA and GEANT4
- Also deals with surface enhancements (Surface array WG) with scintillators, radio, and IceACT

Cosmic Ray Analyses

Spectrum and composition

- Both low-energy and medium energy spectra
- Density of GeV muons of air showers in IceTop
- Seasonal variation of the muon and the mu-nu flux
- Upcoming analyses: Machine learning methods for composition, muon multiplicity, low energy extension, gamma-hadron separation

Anisotropy

- Small and large scale structures in the sky
 Surface upgrade
- Air shower reconstructions and cross-calibrations of prototype stations

Diffuse WG

- Works on the diffuse (from all directions) flux of neutrinos observed on Earth
- Tries to measure the atmospheric and astrophysical spectrum of neutrinos in the energy range of TeV to EeV (see Lu's talk yesterday)
- Also deals with several particle-physics measurements such as cross-sections, nu/nu_bar ratio

Diffuse Analyses

Astrophysical flux

- Event selections: (see talk by Marjon tomorrow morning)
 - HESE, MESE, Northern Tracks/Diffuse NuMu, ESTES, PEPE
 - Upcoming "GlobalFit": combining measurements
- Identification of tau neutrinos (double pulse, double cascade)
- Flavor ratio of astrophysical neutrinos (expectation: 1:1:1)
- Particle physics
- Inelasticity measurements the ratio of hadronic cascade energy to total neutrino energy in $\nu\mu$ CC interactions
- Neutrino-nucleon cross section measurements
- Glashow resonance @ 6.3 PeV $\bar{\nu}_e + e^- \rightarrow W^- \rightarrow X$ Atmospheric nu
- Seasonal variations (also CR-WG)
- Measuring Earth's core density

Neutrino Sources Working Group

- Main goal: to pinpoint the sources of astrophysical neutrinos
- Check for "hot spot" (clusters of neutrinos)
- Can have clusters in both time and space
- Can only explain $\sim 1\%$ of the total flux of neutrinos, so other sources must be dim
- Analyses are testing new hypotheses for correlating IceCube's neutrino data with possible sources
- WG has several tools to do these searches (Skylab, csky, FIRESONG, etc.)
- Main ingredients foe a nu-sources analysis:
 - Where are you looking? (source, region, whole sky, etc.)
 - When are you looking? (time integrated, transient or realtime etc.)

Neutrino Sources Analyses

 $+75^{\circ}$

PKS 1424+240

12h **Right** Ascension

 $-\log_{10}(p_{\text{local}})$

5

3

+50

Declination

 $+25^{\circ}$

24h

Active Galaxy

- NGC 1068
- Published as Science paper
- Excess of neutrinos discovered with 4.2σ
- Used a skymap search from 2011 to 2020

Gamma Ray Burst (GRB)

- GRB 221009A
- Brightest GRB observed by Fermi-GBM to date
- IceCube placed upper limits on the neutrino flux form this source
- After an alert: The analyzers looked at that source at the time surrounding the event

 10^{-2}

 10^{0}

 10^{-4}

 10^{-4}

HAWC 95% CL UL at 1 TeV

 10^{6}

T0 [+8.0, +14.4] h

 10^{4}

 10^{2}

E [GeV]

106

 10^{49}

 10^{8}

14

Realtime

- Technical WG, works closely with nu-sources WG
- Build tools for rapid identification of neutrino sources
- Sends alerts to the astro community
- Also receives alerts from the astro community and quickly searches for neutrinos in coincidence
- Analyses are presented in the nu-sources WG
- Three main strategies:

Realtime Alerts

TXS Follow-up: IceCube sent out an alert

- Alert from IceCube followed up by several observatories (astrobites article)
- Magic found a correlated flare of gamma rays, Fermi detects a flaring blazar: TXS 0506+056

IceCube alerts 2011-2020

 Skymap of all neutrino candidate alerts using this analysis

Follow-up detections of IC170922 based on public telegrams

- "All analyses that focus on neutrinos changing flavor as they Cross the Earth"
- Oscillation probability

$$P_{lpha
ightarroweta,lpha
eqeta}=\sin^2(2 heta)\sin^2\left(rac{\Delta m^2L}{4E}
ight)\,.$$

- Oscillation parameters, tau neutrino appearance, neutrino mass ordering, non-standard interactions, sterile neutrinos
- (see Sanjib's talk Monday)

Oscillations Analyses

 $m^2 \uparrow$

OscNext:

- Data selection using DeepCore
- Two samples: "high-stats" sample and "verification" sample (subset of golden events)
- Analysis using OscNext:
 - NuMu disappearance, NuTau appearance
 - Non standard neutrino interactions (NSI)
 - Neutrino mass ordering

MEOWS

- Dataset for sterile neutrino search
 - Also used for NSI analysis

FLERCNN

• New reconstruction tool (fast) for low energies

Beyond Standard Model WG

- WG focuses on new physics that could be out there (The 3-flavor model of neutrino oscillations is widely accepted, but what if that is not the whole story?)
- Interactions with new physics can cause distortions in the spectrum and flavor of both astrophysical and atmospheric neutrinos

BSM Analyses

- **Sterile-neutrinos** (w/ decay): Do we see a signal consistent with that from a 4th neutrino flavor? Using MEOWS.
- **Magnetic monopoles**: Is there evidence for slow non-relativistic monopoles?
- **Diffuse DM**: could part of the diffuse spectrum be due to DM?
- **Solar/Earth DM**: Do we see an excess of neutrinos from the Sun/center of the Earth that could be from DM?

Supernova WG

- Supernova (SN) neutrinos are at a very low energy compared to what IceCube normally sees.
- Therefore in a supernova, we would expect an overall rise in the "noise" rate of the detector, rather than identifying many individual events
- SN WG does online and offline SN analyses
- Conducts "fire drills" to test response
- ELOWEN analyses for GeV neutrinos: solar flare and GW
- Realtime alert within SNEWS
 Supernova Early Warning System

Other technical WGs

Calibration WG

- Deals with calibration of the detector
- Ice properties with LED flashers, using muon tracks, Sweden camera studies,
- DOM efficiency, IceTop calibration

Reconstruction WG

- Uses approximate models for photon timing distributions (SPICE-bfr, ftp)
- Some of the reconstructions are machine learning/deep learning based (see Tianlu's talk tomorrow)

• Physics analyses depend heavily on the calibration and reconstruction WG's

Bronze alert last Saturday

Where everything comes together

- Analysis Call on Thursdays at 9:00 am CST (~1 hour)
- Most nearly-finished analyses are presented to the whole collaboration here
 - High-level description of the analyses
- Good for learning about other analyses in IceCube
- Also sometimes have WG summaries
- Collaboration-wide announcements, discussions and decisions happen here

How to Do Your Own Analysis in IceCube

How to publish an IceCube paper

Summary document

Thank you for your attention.

Are there any questions?