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What is version control?

● Reversibility: the ability to back up to a previous state if you 
discover that some modification you did was a mistake or a bad 
idea.

● Concurrency: the ability to have many people modifying the same 
collection of files knowing that conflicting modifications can be 
detected and resolved.

● History: the ability to attach historical data to your data, such as 
explanatory comments about the intention behind each change. 
Even for a programmer working solo, change histories are an 
important aid to memory; for a multi-person project, they are a 
vitally important form of communication among developers.

Tracks and manages changes that you make to something
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About git
● Created for linux kernel development
● Easy to use but powerful version control system
● Designed as distributed system. Manage your project on a server 

and work on local versions
● Keep track of different versions
● Split off different development branches and then combine them 

back together
● Makes collaborative work easy
● Widely used in software development
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Github
● Web service to host remote git repositories
● Public and private repositories
● Forking and pull requests
● Bugtracking, feature requests and more
● Home to many projects
● There are other services like Bitbucket or GitLab
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Some terms

● Top-level directory of files and directories that is managed by a 
version control system

● Often stored on a webserver
● Developers contribute to it

Repositories

Branches
● Repositories can contain parallel versions of themselves
● One main branch and several development branches
● Once developed, can merge to main
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Some terms
Commit

● Set of file modifications grouped under the same user-provided 
descriptive comment 

● Provides a snapshot in time of the entire repository

Pull request

● Pull in your contribution (in your branch) and merge them into the 
main branch

● Better than a direct commit to the main branch to avoid mistakes
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Cloning respositories
● To work with a repository you create a local copy of a remote 

repository
● Contains the project files and the git repository information
● Set the project files to a specific branch/version by checking it out
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Committing changes
● If you made changes to your local files you can save them by

● Adding them to the staging area
● Committing them to your local repository
● Writing a comment indicating the changes
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Pushing changes
● Upload your committed changes by pushing them to the upstream

repository ( if you have access)
● Most collaborative work use pull requests
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Updating your clone
● Update your clone by fetching the latest changes from the upstream
● Update your branch by merging the fetched changes into your branch
● Or do both by invoking the pull command
● git tries to merge files automatically
● Sometimes this is not possible and you will get a conflict warning which you 

then have to resolve
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Forks
● Fork is a new repository that shares code and visibility 

settings with the original “upstream” repository
● You want to contribute to a repository you do not own (e.g. 

some cool project)
● Create a remote copy (fork)
● Develop your fork as usual
● Send a pull request to the original repository to request 

merging of your changes
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Setting up
● Create a Github account (https://github.com/)

● These are free to get from github.com
● Request you include your full name in your GitHub account 

profile (J. Smith is OK)
● Include your current institution in your account profile

● Ask one of the MANY GitHub icecube ORG admins for an 
invitation

● Asking in #software or #icecube-it on Slack usually gets an 
invite created in a few minutes

● Take a look at the IceCube Github Guide

https://github.com/
https://github.com/icecube/icecube.github.io/wiki/GitGuide%3AGitHub-in-IceCube
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Setting up Locally
● You can install github on your computer
● Linux

● sudo apt-get install git
● Mac

● sudo port install git
● Also preinstalled on icecube cobalts.
● Set your name and email for your command line client

● git config --global user.name "First Last"
● git config --global user.email "user@icecube.wisc.edu"

● Make sure this account is associated with your GitHub 
account (can have many!) 

mailto:user@icecube.wisc.edu
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Setting up for IceCube
● Use 2-Factor authentication with GitHub

● Plenty of options are available. (SMS, Authenticator apps, tokens
● GitHub will require this by end of 2023. Also requirement in 

IceCube
● Add and use your ssh keys

● Nearly impossible to push commits with git on the command line 
otherwise

● Follow instructions here: generating ssh keys

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
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Creating a repository
● Login to github
● Click on + to create a “new repository”
● Give it a name, a description, choose “public/private”
● Also add a README file
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Cloning
● Go to the local directory where you want the clone

● git clone <url>
● The url can be found from the repository page on github
● You can also clone a repository from another computer via ssh
● Try cloning icetray! https://github.com/icecube/icetray
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Working with branches

● A new repository starts with 
a master branch

● If you clone a repository 
you also start out in the 
master branch

● You can view branches in 
github interface or local with
● git branch  a−
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Creating branches

● You can create new 
branches via github interface

● Using the dropdown menu 
switch to the branch from 
which you want to start

● To update your local repo 
do
● git fetch
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Creating branches
● You can also create new branches via the command line

● git branch <branchname>
● git checkout <branchname> 

● FYI: these two commands can be combined with
● git checkout -b <branchname>

● You can switch between branches in your staginf area with
● git checkout <branchname>
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Exploring branches
● You can look at the branches and how they are connected using the 

github interface
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Updating repositories
● Sometimes the remote repo changes
● We can simulate this using the github interface

● Switch to a branch
● Edit the Readme file or create a new one
● commit your changes

● To update your clone do
● git fetch

● To update the local branch, change to the branch then do
● git checkout <branchname>
● git merge origin/<branchname>

● You can combine the fetch and merge commands by
● git checkout <branchname>
● git pull
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Merging
● You can also merge different branches into each other
● We did this already on the last slide with the "origin/<branchname>" merge

● git checkout <branchname1>
● And then

● git merge <branchname2>
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Commits
● Committing with the github interface is not the usual case
● Usually you work on your computer and want to commit the changes to 

the remote repository
● To do this first switch to a branch you want to work on
● Do all your developing
● Today you could edit the Readme file and create another new file
● To see the changes of local files with respect to the last commit you can 

do
● git status

● It will list new and changed files
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Commits
● Tell git which files to commit to the repository

● git add <filename>
● You can also remove added files from this list

● git reset HEAD <filename>
● To commit the changes to your local repository do

● git commit -m “some comment”
● And to upload the files to the remote

● git push
● Often the remote changes between your last pull and the push. So you can 

pull before pushing
● You can push to a brach on upstream too

● git push --set-upstream origin <branchname>



  25

Conflicts
● Sometimes git can not merge files because of conflicting changes
● We can simulate this

● create a new branch from your current one, but do not switch branches
● edit the Readme file in the current branch and commit the changes
● change to the new branch
● edit the Readme in the same line (with some other edit) and also commit 

the changes
● Try to merge the first branch into the second

● You will get an error indicating conflicts in the file
● Edit the file to resolve the conflict (conflicting lines are indicated by «« and

● »»)
● Add the resolved file to the staging area and commit the resolution



  26

Forking
● If you want to fork a repository in github, you can use the fork button
● You would then clone your fork and work as usual
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Syncing
● To keep your fork up-to-date with respect to the original you have to set 

the original as upstream
● git remote -v

● Add the original as additional upstream
● git remote add upstream <originalurl>
● git remote -v

● To fetch the original updates do
● git fetch upstream

● Merge the original branch in your upstream branch
● git merge upstream/<branchname>

● All changes are committed to your fork
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Pull requests

● To merge your fork back with the original you have to send a pull request 
via the "New pull request" button of your fork. Here you should describe 
your changes

● The owner of the original will see this, can discuss the changes with you 
and ultimately accept your request.
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Pull requests
● Checkout the summer school repository 

(https://github.com/jessiethw/summer_school_examples)
● Create a branch
● Add a file in the branch, make changes
● Commit changes in the branch to upstream
● Push to your branch
● Create a pull request to merge with the main

https://github.com/jessiethw/summer_school_examples
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Summary

● Git is a powerful tool for collaborative software design.
● Many projects are hosted on github
● You should now be in a position to manage own repositories as well as 

contribute to other ones
● Many helpful resources on the internet
● IceCube Github guide

https://github.com/icecube/icecube.github.io/wiki/GitGuide:GitHub-in-IceCube
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