
 1

GitHub Tutorial
Aswathi Balagopal V., Jeff Weber
IceCube Summer School, 2023

 2

What is version control?

● Reversibility: the ability to back up to a previous state if you
discover that some modification you did was a mistake or a bad
idea.

● Concurrency: the ability to have many people modifying the same
collection of files knowing that conflicting modifications can be
detected and resolved.

● History: the ability to attach historical data to your data, such as
explanatory comments about the intention behind each change.
Even for a programmer working solo, change histories are an
important aid to memory; for a multi-person project, they are a
vitally important form of communication among developers.

Tracks and manages changes that you make to something

 3

About git
● Created for linux kernel development
● Easy to use but powerful version control system
● Designed as distributed system. Manage your project on a server

and work on local versions
● Keep track of different versions
● Split off different development branches and then combine them

back together
● Makes collaborative work easy
● Widely used in software development

 4

Github
● Web service to host remote git repositories
● Public and private repositories
● Forking and pull requests
● Bugtracking, feature requests and more
● Home to many projects
● There are other services like Bitbucket or GitLab

 5

Some terms

● Top-level directory of files and directories that is managed by a
version control system

● Often stored on a webserver
● Developers contribute to it

Repositories

Branches
● Repositories can contain parallel versions of themselves
● One main branch and several development branches
● Once developed, can merge to main

 6

Some terms
Commit

● Set of file modifications grouped under the same user-provided
descriptive comment

● Provides a snapshot in time of the entire repository

Pull request

● Pull in your contribution (in your branch) and merge them into the
main branch

● Better than a direct commit to the main branch to avoid mistakes

 7

Cloning respositories
● To work with a repository you create a local copy of a remote

repository
● Contains the project files and the git repository information
● Set the project files to a specific branch/version by checking it out

 8

Committing changes
● If you made changes to your local files you can save them by

● Adding them to the staging area
● Committing them to your local repository
● Writing a comment indicating the changes

 9

Pushing changes
● Upload your committed changes by pushing them to the upstream

repository (if you have access)
● Most collaborative work use pull requests

 10

Updating your clone
● Update your clone by fetching the latest changes from the upstream
● Update your branch by merging the fetched changes into your branch
● Or do both by invoking the pull command
● git tries to merge files automatically
● Sometimes this is not possible and you will get a conflict warning which you

then have to resolve

 11

Forks
● Fork is a new repository that shares code and visibility

settings with the original “upstream” repository
● You want to contribute to a repository you do not own (e.g.

some cool project)
● Create a remote copy (fork)
● Develop your fork as usual
● Send a pull request to the original repository to request

merging of your changes

 12

Setting up
● Create a Github account (https://github.com/)

● These are free to get from github.com
● Request you include your full name in your GitHub account

profile (J. Smith is OK)
● Include your current institution in your account profile

● Ask one of the MANY GitHub icecube ORG admins for an
invitation

● Asking in #software or #icecube-it on Slack usually gets an
invite created in a few minutes

● Take a look at the IceCube Github Guide

https://github.com/
https://github.com/icecube/icecube.github.io/wiki/GitGuide%3AGitHub-in-IceCube

 13

Setting up Locally
● You can install github on your computer
● Linux

● sudo apt-get install git
● Mac

● sudo port install git
● Also preinstalled on icecube cobalts.
● Set your name and email for your command line client

● git config --global user.name "First Last"
● git config --global user.email "user@icecube.wisc.edu"

● Make sure this account is associated with your GitHub
account (can have many!)

mailto:user@icecube.wisc.edu

 14

Setting up for IceCube
● Use 2-Factor authentication with GitHub

● Plenty of options are available. (SMS, Authenticator apps, tokens
● GitHub will require this by end of 2023. Also requirement in

IceCube
● Add and use your ssh keys

● Nearly impossible to push commits with git on the command line
otherwise

● Follow instructions here: generating ssh keys

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

 15

Creating a repository
● Login to github
● Click on + to create a “new repository”
● Give it a name, a description, choose “public/private”
● Also add a README file

 16

Cloning
● Go to the local directory where you want the clone

● git clone <url>
● The url can be found from the repository page on github
● You can also clone a repository from another computer via ssh
● Try cloning icetray! https://github.com/icecube/icetray

 17

Working with branches

● A new repository starts with
a master branch

● If you clone a repository
you also start out in the
master branch

● You can view branches in
github interface or local with
● git branch a−

 18

Creating branches

● You can create new
branches via github interface

● Using the dropdown menu
switch to the branch from
which you want to start

● To update your local repo
do
● git fetch

 19

Creating branches
● You can also create new branches via the command line

● git branch <branchname>
● git checkout <branchname>

● FYI: these two commands can be combined with
● git checkout -b <branchname>

● You can switch between branches in your staginf area with
● git checkout <branchname>

 20

Exploring branches
● You can look at the branches and how they are connected using the

github interface

 21

Updating repositories
● Sometimes the remote repo changes
● We can simulate this using the github interface

● Switch to a branch
● Edit the Readme file or create a new one
● commit your changes

● To update your clone do
● git fetch

● To update the local branch, change to the branch then do
● git checkout <branchname>
● git merge origin/<branchname>

● You can combine the fetch and merge commands by
● git checkout <branchname>
● git pull

 22

Merging
● You can also merge different branches into each other
● We did this already on the last slide with the "origin/<branchname>" merge

● git checkout <branchname1>
● And then

● git merge <branchname2>

 23

Commits
● Committing with the github interface is not the usual case
● Usually you work on your computer and want to commit the changes to

the remote repository
● To do this first switch to a branch you want to work on
● Do all your developing
● Today you could edit the Readme file and create another new file
● To see the changes of local files with respect to the last commit you can

do
● git status

● It will list new and changed files

 24

Commits
● Tell git which files to commit to the repository

● git add <filename>
● You can also remove added files from this list

● git reset HEAD <filename>
● To commit the changes to your local repository do

● git commit -m “some comment”
● And to upload the files to the remote

● git push
● Often the remote changes between your last pull and the push. So you can

pull before pushing
● You can push to a brach on upstream too

● git push --set-upstream origin <branchname>

 25

Conflicts
● Sometimes git can not merge files because of conflicting changes
● We can simulate this

● create a new branch from your current one, but do not switch branches
● edit the Readme file in the current branch and commit the changes
● change to the new branch
● edit the Readme in the same line (with some other edit) and also commit

the changes
● Try to merge the first branch into the second

● You will get an error indicating conflicts in the file
● Edit the file to resolve the conflict (conflicting lines are indicated by «« and

● »»)
● Add the resolved file to the staging area and commit the resolution

 26

Forking
● If you want to fork a repository in github, you can use the fork button
● You would then clone your fork and work as usual

 27

Syncing
● To keep your fork up-to-date with respect to the original you have to set

the original as upstream
● git remote -v

● Add the original as additional upstream
● git remote add upstream <originalurl>
● git remote -v

● To fetch the original updates do
● git fetch upstream

● Merge the original branch in your upstream branch
● git merge upstream/<branchname>

● All changes are committed to your fork

 28

Pull requests

● To merge your fork back with the original you have to send a pull request
via the "New pull request" button of your fork. Here you should describe
your changes

● The owner of the original will see this, can discuss the changes with you
and ultimately accept your request.

 29

Pull requests
● Checkout the summer school repository

(https://github.com/jessiethw/summer_school_examples)
● Create a branch
● Add a file in the branch, make changes
● Commit changes in the branch to upstream
● Push to your branch
● Create a pull request to merge with the main

https://github.com/jessiethw/summer_school_examples

 30

Summary

● Git is a powerful tool for collaborative software design.
● Many projects are hosted on github
● You should now be in a position to manage own repositories as well as

contribute to other ones
● Many helpful resources on the internet
● IceCube Github guide

https://github.com/icecube/icecube.github.io/wiki/GitGuide:GitHub-in-IceCube

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

