
Coding and Software
Best Practices

IceCube Summer School 2023

Pierpaolo Savina
pierpaolo.savina@icecube.wisc.edu



Outline

WRITE
 C

ODE

TEST IT

DOCUMENT IT

Great 
Code!

How to write good code in the most 
efficient way:

- coding standards and style
- version control

Tests: make sure your code
works the way you say it does.

Documentation: 
How to share your code



Coding standards:
set of guidelines and best 
practices that are used to 
create consistent, high-quality 
code. 

Rules, techniques, and best 
practices to develop cleaner, 
and readable code.

Introduction



How to make a good code

Coding Standards:

● Improve Code Quality: Coding 
standards ensure code written 
consistently.
Easier to understand and use.

● Increase Efficiency: avoid 
common mistakes and 
implementing proven solutions.

● Facilitate Collaboration: easier 
to share.



Which Language?

In IceCube, usually 
written in python or C++

Python:
- Easier
- Slower (for intensive 

calculations)

C++:
- Harder to read
- Big and complex 

calculations



How to write good code
Write modular code:

● A function should perform a single 
purpose with minimal operations.

● Easier and faster to fix smaller parts.

● Extend to big picture: Good software 
does ONE single task REALLY 
WELL.

Write your code with an editor: Emacs, 
Jupyter Notebooks, vscode

NOTE: personally recommend vscode: great support to 
both languages (autocomplete, easier debugging).
Moreover Jupyter Notebooks can be executed inside 
vscode 

Write your code with consistency -> 
style guides

Use version control: git



Coding Standards and Style Guides

Choose a style guide and integrate a linter into your workflow:
● Python PEP8
● Google Style Guides
● C++

Linters/Code Checkers
- C++

● cpplint
● clang-analyzer

- Python:
● flake8
● black

Linting: automated checking of your source 
code for programmatic and stylistic errors

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/cpplint/cpplint
https://clang-analyzer.llvm.org/
https://flake8.pycqa.org/
https://black.readthedocs.io/


Structure of a project

Organize code:
README: The document every new user will read 
before using new code.

- Describe the general purpose of the code.
- Explain how to install and (eventually) compile.
- Write clear README’s with lots of description.

LICENSE: Whether you make a project on your 
own or contribute a feature to a project, code can 
be released for public use. 
Keep your contact information updated with 
IceCube, you may be reached for licensing 
purposes.



Version Control with git

Git is a Version Control System (VCS): multiple versions of a code, shared across 
multiple developers.

See changes you make to your 
code and easily revert them.

Github.com is a website that 
hosts git repositories on a remote 
server (Github guide)

Workflow:
Code→ Test → Commit → Merge

https://www.atlassian.com/git/tutorials


Branches
● Branches used to experiment and 

add features to software, integrated 
after testing.

● In IceCube: branches used for 
different analyses.

● Name your branch after your name 
and analysis.

● Unless your work is to improve/add 
features to widely-used software, 
analyzers do not attempt to merge 
with the main branch.

● your code should be independent of 
the software infrastructure.



How to make commits

git add .
git commit -m ‘commit message’
git push origin <branch>

The “commit message” explains the 
update. 

Each commit narrowly-focused: 
one update at a time. 
Small updates often. 

1. Correctness, simplicity, and clarity 
come first.

2. Use tests and documentation as 
internal design checks.

3. Make small, atomic commits.

4. Keep style-related commits 
separate from functional changes.

5. Prefer short-lived branches.



Testing your code

- Tests verify that all code functions operate successfully and as 
designed.

- Tests should sample all minimal examples.

- Test are described in your docs.

- MAKE SURE TESTS WORK BEFORE RELEASING NEW 
VERSIONS OR MERGING (next slides).



Documenting the code

Main ways to document: README, comments and tech notes.

README:
Used to share important informations about your analysis:
○ Requirements
○ How to install
○ How to use it

Comments: 
Lines in your code where you explain what’s happening.
○ Comment everywhere and a lot.
○ Explain what the code does at each step.
○ Docstrings: Comments inside functions about the purpose.

Tech note: 
A paper that describes the full details of a software suite.
○ Explain motivation, include relevant mathematics, plots.
○ Show examples for all/common scenarios.
○ List classes and functions with definitions.



ChatGPT is your friend
ChatGPT

Might help with writing code as well as documenting!!!

https://openai.com/blog/chatgpt


Exercise

Check out Aswathi’s tutorial tomorrow, she’s doing a more complete exercise!!!



Exercise



Exercise



● #software in the IceCube Slack for any questions/errors with 
code.

● Also ask in your Working Group channels (do this first!)

● Go to #icecube-it for any hardware-related issues.

● When in doubt, ask!

● Learn and use GitHub now so you don’t have to during a code 
review!

Last advices




