Cosmic ray anisotropy with LAASO

Wei Gao, Wei Liu, David Ruffolo, et al. On behalf of LHAASO collaboration

CRA2023, Loyola University - Chicago, 2023/05/16-/2023/05/19

Cosmic ray anisotropy

• Arrival direction is approximately isotropic, but still anisotropic

 $[{\rm GeV}^{1.5}_{1.5}{\rm J(E)}_{\rm m^{-2}}{\rm s^{-1}}]$

- amplitude $\sim 10^{-4} 10^{-2}$
- evolve with energy

M. Ahlers, P. Mertsch, Progress in Particle and Nuclear Physics 94 (2017) 184–216

Julia Becker Tjus et al., Physics Reports, 872(2020) 1–98

- Origins of anisotropy are still confused
- Local magnetic
- Local source

.....

LHAASO

- 29°21' 31" N, 100°08'15" E
- 4410m a.s.l.
- ~600g/cm
- Multi variable measurements

18WFCTs

Status of WCDA

- WCDA full array mode: ~ 35kHz
- 2021/03/05-2022/12/31: 96% duty cycle

Status of KM2A

- KM2A full array: ~ 2.5kHz
- The average duty cycle of Full-KM2A is 96.8%, nearly 100% for most of the time.

2019-12-27-2020-11-30

2020-12-01-2021-07-19

2021-07-20-

Anisotropy with WCDA

100 150 200 250

- By Wei Liu et al. •
- 2021.09.01-2022.08.31 (one year) •
- Zenith 0°<θ<50° •
- TeV ~ hundred TeV

Energy (TeV)	nhit		
1.3	60-80		
1.8	80-100		
2.1	100-125		
2.6	125-160		
3.4	160-200		
4.3	200-250		
5.4	250-320		
7.1	320-400		
8.8	400-500		
12.2	500-630		
17.0	630-800		
33.6	800-2000		
169.0	2000-3200		

250

200 250 300

200 250

30

350 RAldemeel

200 250

200

250

100

100

1.34 TeV

pattern does not vary with energy <100 TeV Above 100 TeV, • significance is not

enough

solar anisotropy-WCDA

• Expect: amplitude 0.0004, phase 6 hour

Anisotropy with KM2A

- By Wei Gao et al.
- 2020.01.01-2022.12.31
- Zenith 0°<θ<40°
- Dozens TeV ~ PeV

KM2A	half	three	Full	Total
Time	335 days	231 days	501 days	1097 days
Used events	3.89×10^{9}	5.98×10^{9}	19.23 × 10 ⁹	29.09 × 10 ⁹

Relative Intensity

• 1D profile fitted with:

Dipole anisotropy VS energy

Solar anisotropy

χ² / ndf

250

250

250

250

250

 χ^2 / ndf

 χ^2 / ndf

 χ^2 / ndf

 χ^2 / ndf

200

200

200

200

200

21.84 / 16

350

350

350

350

350

28.67 / 16

 -226.3 ± 52.2

38.94 / 16

-204.2 ± 12.5

12.65 / 16

 -258.8 ± 9.4

38.4 / 16

 181.2 ± 9.7

 100.2 ± 13.2

A 5.672e-05 ± 1.309e-05

300

A 8.255e-05 ± 1.394e-05

300

A 0.0001302 ± 0.0000213

300

A 0.0001334 ± 0.0000292

300

A 8.129e-05 ± 7.436e-05

300

ext-sidereal

Hourly anisotropy-WCDA

- By David Ruffolo et al.
- In a given hour, anisotropy includes
 - > Only part of sky (using zenith < 45)
 - Sidereal diurnal anisotropy
 - Solar diurnal anisotropy
 - Any transient effects
- look for a transient anisotropy due to the interplanetary coronal mass ejection passage on 2021 November 4-5, starting with 30 < Nhit < 60 (low energies, includes some particles at <100 GeV).

Hourly zenith-centered sky maps on 3th November 2021

The day before strong anisotropy

Hourly zenith-centered sky maps on 4th November 2021

Start of ICME passage

Hourly zenith-centered sky maps on 5th November 2021

End of ICME passage

Conclusion

---the all particle anisotropy was observed from TeV to nearly PeV with LHAASO, the preliminary results consistent with others.

---the solar anisotropy approximating the Compton effect was observed, while the stability between individual energy intervals have more large deviation.

---see evidence for enhanced anisotropy at the time of ICME passage (2021 November ICME event), for an data sample that includes cosmic rays of <100 GeV.

• Further works

---optimize the data selection, update the results, extend the all particle anisotropy energy range to higher energy and lower energy

- ---unify the energy standards of WCDA and KM2A
- ---more works for the hourly anisotropy at low energy (<TeV)
- ---more works for the dipole anisotropy due to Compton-Getting effect

supplement

Qudrapole anisotropy VS energy

