### TALE FD Cosmic Ray Composition and Spectrum Update

Tareq AbuZayyad for the Telescope Array Collaboration CRA 2023 Loyola University Chicago, USA 2023/05/17

### Outline

- Introduction
- TALE Detector
- Data and Analysis
- Results
- Summary

### Introduction

- I review results on the measurement of the cosmic-ray energy spectrum and composition using the Telescope Array Low Energy Extension (TALE) Fluorescence Detector (FD).
- Mass composition is inferred through measuring the shower development X<sub>max</sub>.
- The measurement covers the cosmic rays energy range 10<sup>15.3</sup> – 10<sup>18</sup> eV

### Introduction

- TALE FD energy spectrum measurement using two years of data was published in ApJ in 2018: DOI: 10.3847/1538-4357/aada05
- TALE FD mass composition results based on four years of data were published in ApJ in 2021: <u>DOI: 10.3847/1538-4357/abdd30</u>
- The analysis was updated to use seven years of data for the ICRC 2021 meeting:
  - https://pos.sissa.it/395/346/pdf
  - https://pos.sissa.it/395/347/pdf
- Here we review results presented at the ICRC and show updated results using nine years of data.
  - Work in progress (Not ready for publication yet)

#### Telescope Array (TA) Low Energy Extension (TALE)



All 10 Telescopes installed and in operation since fall 2013

3/03/29

80 scintillation surface detectors deployed:

40 SDs with 400m spacing

40 SDs with 600m spacing

Majority started operations in **summer of 2017**.

#### TALE Fluorescence Detector

- 10 high-elevation telescopes at the Middle Drum site, looking from 31°-59° in elevation.
- Operate in conjunction with the TA Middle Drum FD.





#### **TALE FD Event**

For TALE FD reconstruction: we combined the time and profile fit: simultaneous Profile Constrained Geometry Fit (PCFG)

originally developed for HiRes monocular analysis





#### **TALE Cherenkov Event**

PCGF turns out to work very well on Cherenkov light dominated events





#### **TALE Cherenkov Event**

PCGF turns out to work very well on Cherenkov light dominated events



# Reconstruction Resolution (Geometry) (1)

- One histogram per decade in energy starting at E = 10<sup>15.3</sup> eV
- Shower Track R<sub>p</sub> [m]
- Histogram:  $\Delta R_p / R_p$





### Reconstruction Resolution (Geometry) (2)

- One histogram per decade in energy starting at E = 10<sup>15.3</sup> eV
- Shower Track  $\psi$  angle (degree)
- Histogram:  $\Delta \psi$  (degree)





### Reconstruction Resolution (Geometry) (3)

- One histogram per decade in energy starting at E = 10<sup>15.3</sup> eV
- Shower Track zenith angle (degree)
- Histogram:  $\Delta \theta$  (degree)





### **Reconstruction Resolution (Energy)**

- One histogram per decade in energy starting at E = 10<sup>15.3</sup> eV
- Shower Energy [eV]
- Histogram:  $\Delta E / E$





### **Reconstruction Resolution (Xmax)**

- One histogram per decade in energy starting at E = 10<sup>15.3</sup> eV
- Shower X<sub>max</sub> [g / cm<sup>2</sup>]
- Histogram: ΔX<sub>max</sub> [g / cm<sup>2</sup>]





### Data Sets

- TALE FD monocular data (Cherenkov light dominated).
- Data collection period: 06/2014 11/2018 (published ApJ 2021)
- 2633 hours of observation
- ICRC 2021 updated data:
  - 12/2018 04/2021: 822 hours of observation
- Latest update:
  - 05/2021 09/04/2022: 675 hours of observation
- Data collection period: 06/2014 04/2021 (*ICRC 2021*)
- 3456 hours of observation
- Update through 09/04/2022 (This meeting)
  - 4131 hours

### Data Set Update

- Detector data was calibrated and reconstructed for the period 05/2021 – 09/04/2022
- Good weather selection was made
- Event reconstruction and Event selection same as the published composition measurement.
- MC simulations for this period have not been performed and I am relying on the existing four year simulation set to be representative of the new data.

### Composition Analysis: Primary Fractions (Xmax Fits)

- Event reconstruction: Shower calorimetric energy (E<sub>cal</sub>), shower Xmax for each event.
- Events (Data & MC) binned in energy; bins [0.1 in log(E)]
- At each energy bin:
  - Fit Data Xmax distribution histogram as a sum of four (MC) primary Xmax distributions:
    - Primaries: proton, helium, nitrogen (CNO), iron.
    - MC / Data reconstructed, filtered identically.
- Energy range: 15.2 < log10(E<sub>cal</sub> [eV]) < 18.0
  - Run out of statistics above 10<sup>18</sup> eV.
- Use ROOT's TFractionFitter to do actual fit.

# Example X<sub>max</sub> distributions (1)

- Data and MC events
  reconstructed with
  energies in the range of:
- 15.7 < log<sub>10</sub> (E<sub>cal</sub>) < 15.8
- All Plots: (Black) Data
- Top left: Iron
- Top right: CNO
- Bottom left: Helium
- Bottom right: Proton









# Example X<sub>max</sub> distributions (2)

- Data and MC events reconstructed with energies in the range of:
- 16.7 < log<sub>10</sub> (E<sub>cal</sub>) < 16.8
- All Plots: (Black) **Data**
- Top left: Iron
- Top right: CNO
- Bottom left: Helium
- Bottom right: Proton





### Fit results (EPOS-LHC)

- Published results based on four years of data.
- Lowest Energy bin starts at: log<sub>10</sub>(E<sub>cal</sub>) = 15.2
- Mean log(A) calculated as a weighted sum of log(A) for each of 4 fit primaries.
- TALE data <In (A)> from fractions in top figure.





# Mean Reconstructed X<sub>max</sub> vs. Shower Energy

(Top Figure): Reconstructed Data <X<sub>max</sub>> vs. Shower total Energy starting at log(E [eV]) = 15.3

Also shown, results for 4 MC primaries.

- (Bottom Figure): A broken line fit to TALE data <X<sub>max</sub>>
  - Break point: 17.23 +/- 0.05
  - Slope before: 35.13 +/- 0.35
  - Slope after: 62.40 +/- 4.95
- (Bottom Figure): Also shown (red squares) are <X<sub>max</sub>> reported by TA using hybrid events from Black Rock / Long Ridge FD's and the main SD array.







## Mean Reconstructed X<sub>max</sub> vs. Shower Energy

- Including data collected between 2018/12 through 2021/04
- (Top Figure): New Data <X<sub>max</sub>> compared to published data (2014/06-2018/11)
- (Bottom Figure): All data along with updated broken line fit to data <X<sub>max</sub>>
- (Both Figures): Also shown (red squares) are <X<sub>max</sub>> reported by TA using hybrid events from Black Rock / Long Ridge FD's and the main SD array.



#### Nine year update

### New Data on-time (Applies to both updates)

- Accurate detector exposure calculation requires MC simulation with information about status of each telescope (on or off) for a particular time period.
- Period starting in December 2018 does not have corresponding MC simulation.
- To estimate the exposure for the period starting December 2018, *I* **required** that the CR flux from this period have the same normalization as the flux measured using the four year data set, i.e. the set with the accurate exposure calculation.
- Effective on-time was found to be 770 hours; slightly above the average value of 751 hours.
  - This is most likely due to the fact that most of the data was collected in winter months with better visibility than yearly average.

## Energy Spectrum (1)

- Updated spectrum compared to ApJ 2018.
  - $\sim$  QGSJetII-03  $\rightarrow$  EPOS-HHC [Missing Energy]
  - <sup> $\tilde{}$ </sup> All Events  $\rightarrow$  Composition event selection

### Energy Spectrum (2)

Nine year TALE Energy spectrum (Monocular)



### Mean Reconstructed X<sub>max</sub>

 Including data collected between 06/2014 through 09/04/2022



### Summary

- Presented a TALE measurement of cosmic rays composition;
  - Updated through August 2022
- Data X<sub>max</sub> distributions were fit to a mix of four primaries (p, He, CNO, Fe)
- Results: Fit primary fractions; mean log (A) calculated from fit primary fractions
- Mean  $X_{max}$  variation with shower energy shows a break in the elongation rate at E = 10<sup>17.2</sup> eV.

#### **BACKUP SLIDES**

### Fit results (QGSJetII-03)

- Lowest Energy bin starts at: log<sub>10</sub>(E<sub>cal</sub>) = 15.7
- Mean log(A) calculated as a weighted sum of log(A) for each of 4 fit primaries.
- MC thrown with equal number of primaries: <In (A)> = 2.01
- Reconstructed MC <In (A)> blue squares.
- TALE data (corrected fractions) shown in red.



### Reconstructed MC Primary Fractions (Equal fractions thrown)

