

Inventory of Galactic cosmic ray sources

Туре	Ejecta E _{kin} , erg	Frequency	Observed number (MW)
Supernova	10 ⁵¹	~0.03/year Last 1604	294 (Green Catalogue)
Wolf-Rayet wind	10 ⁵¹ -over the lifetime		354
O star wind	10 ⁵⁰ (0.01 L _☆)-over 5 Myr winds (2-4)x10 ³ km/s		20,000
Pulsar (Crab)	~4x10 ⁴⁹ (total E _{rot})		~1500
Nova	1045	~30-40 per year	350
Stellar flare	10 ³⁶		
Solar flare	10 ³² -10 ³³	Some 10 per year	

4th Fermi-LAT Catalog

- 8 years of observations
- 50 MeV 1 TeV
- 5065 sources above 4σ
- 75 extended sources
- 354 identified
- >3130 identified or associated sources are active galaxies (blazars)
 - SMC, LMC, and M 31 Galactic srs but a
- Starburst galaxies
 - alaxies few SF galaxies
- 239 pulsars
- Other Galactic sources:
 - 40 SNRs
 - 17 PWNe
 - 30 Globular clusters
 - 6 High-mass binaries
 - 3 Star-Forming Regions
 - 2 Low-mass Binaries
 - η Carinae (binary)
 - 1 Nova V5668 Sagittarii, other novae not included
- 1337 sources do not have any counterparts at other wavelength

CRA • Chicago • May 19, 2023 :: **IVM 3**

High latitude Galactic sources (pulsars, globular clusters) are most likely local

Nova distribution

A sample of Novae with reddening (distance) estimates

Some of them within ~1 kpc distance from the Sun

Ozdonmez+ 2016

Local Bubble and OB associations

- The Local Bubble a low-density region of ~200 pc around the Sun filled with hot HI gas is formed in a series of SN explosions (Sfeir+1999, Frish+ 2011)
- A number of OB stars in the vicinity of the solar system, as close as 100 pc
- Yellow/greenish color marks features at the same distance from the Galactic plane as the solar system

Galactic Loops

- WMAP K-band polarization intensity map
- Unsharp mask version of the Haslam et al. (1982) map
- The origin of the Loops is unknown
- If these are old SNR, accelerated particles may still be present in the shells
- Signatures of the past (recent?) activity in the Solar neighborhood

- ♦ Details of the Galactic structure are clearly seen in residual maps
 - + Spiral arms
 - +Fermi Bubbles
 - + Excesses & Deficits
 - +Loops & Spurs

♦ WMAP K-band polarization intensity map

Signatures of recent SN activity Observation of the ⁶⁰Fe

Science 2016

- \diamond^{60} Fe a half-life 2.6 Myr, β^- decay
- Excess of radioactive ⁶⁰Fe in deep ocean sediments (Knie+'1999, 2004; Ludwig+'2016; Wallner+'2016)
- ♦Lunar regolith samples
 - (Cook+'2009; Fimiani+'2012, 2014)
- ♦Antarctic snow (Koll+'2019).
- ♦ ACE-CRIS observations of ⁶⁰Fe (Binns+'2016)

Observation of the ⁶⁰Fe nucleosynthesis-clock isotope in galactic cosmic rays

W. R. Binns,^{1*} M. H. Israel,^{1*} E. R. Christian,² A. C. Cummings,³ G. A. de Nolfo,² K. A. Lave,¹ R. A. Leske,³ R. A. Mewaldt,³ E. C. Stone,³ T. T. von Rosenvinge,² M. E. Wiedenbeck⁴

CR signatures of local sources

- Anomalous isotopic composition (low energies)
- Changes in the elemental composition vs rigidity
- Spectral bumps
- Spectral breaks
- All sorts of excesses (and deficits?)
- Unexpected spectral behavior of some species
- Anisotropy (high energies)
- Some (all ?) of them are difficult to identify because we do not have a reference system

Pulsar bow shock model by A. Bykov et al. (2017)

- Pulsars with high spin-down power produce relativistic winds
- Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks
- ◇ Ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system → produces universal spectrum, same as for protons
- Similar spectra for electrons and positrons

See also Bykov+'2019, Petrov'+2020

The 5.7 millisecond pulsar PSR J0437-4715

- ♦ Distance: 156.79±0.25 pc
- Closest and brightest millisecond pulsar (MSP), in a binary system with a white dwarf companion and an orbital period of 5.7 days
- ♦ Velocity ~100 km/s
- Observed in optical, far-ultraviolet (FUV), and X-ray bands
- It exhibits the greatest long-term rotational stability of any pulsar
- It is the first pulsar for which the full three-dimensional orientation of the binary orbit was determined, enabling a new test of General Relativity
 CR4+Chicago+May 19, 2023 :: IVM 13

Anomalies in the source isotopic composition

Excesses in low-energy cosmic rays 0.40

Precise spectra of CR species by AMS-02 reveal excesses when compared to ACE-CRIS and Voyager 1 measurements Boschini+'2019, 2020, 2021, 2022 (GalProp + HelMod framework)

So far spectral features/excesses were found in the spectra of:

 \diamond Iron (primary)

♦ Aluminum (50-50 sec.-prim.)

♦ Lithium (secondary)

♦ Fluorine (secondary)

- ♦ Most visible in Fe/He, Fe/O, Fe/Si ratios (arrows)
- ♦ Such features are absent in He/O and Si/O ratios
- The excess in iron follows from consistency between Voyager 1, ACE-CRIS, and AMS-02 data
- The likely source of the excess CR iron are the past consequent explosions of SNe – falls in line with other evidences
- Important that these accelerated particles are still present in CRs!

Aluminum excess

- The sources of cosmic Al are numerous, and are simultaneously also the sources of other rare isotopes, such as ¹⁹F
- ◆ Possible contribution of massive stars proposed to explain the observed anomalous ²²Ne/²⁰Ne ratio and other observed ratios, ¹²C/¹⁶O, and ⁵⁸Fe/⁵⁶Fe, in CRs (Binns+'2008)

 \diamond The ISM abundance of fluorine is anomalously low – it is easily destroyed in stars through p- or α -captures

 $\diamond~$ The origin of cosmic fluorine is still not well constrained

Source of fluorine: SN type II, WR stars, and the asymptotic giant branch (AGB) of intermediate-mass stars CRA • Chicago • May 19, 2023 :: IVM 18

Primary Lithium

- Classical novae new type of ⁷Li source
- Blue-shifted absorption lines of partly ionized
 ⁷Be (->⁷Li) (half-life
 53.22 days) in the spectrum of a classical nova V339 Del ~40–50 days after the explosion (Tajitsu et al. 2015)
- [◆] ⁷Be lines also observed from other novae,
 V1369 Cen, V5668 Sgr,
 V2944 Oph, ASASSN 16kt [V407 Lupi], V838
 Her

♦ The total mass of ⁷Li per novae: ~10⁻⁹–6x10⁻⁹M_☉

High-energy break in the spectra of CR nucleons

• ATIC-2

(Panov+'2009) & CREAM "Discrepant hardening observed in cosmic-ray elemental spectra" (Ahn+'2010)

Interpretation of the break at ~300-400 GV

Based on PAMELA data Vladimirov+'2012 considered 6 scenarios of the break:

♦Injection scenario: associated with injection

Propagation scenario: result of the diffusion (preferred)

♦The ratio p/He shows no break

Prediction for secondaries – change in the spectral index below/above the break

 $\Delta \gamma_{\rm sec} \sim 2 \Delta \gamma_{\rm prim}$

 \Rightarrow Index of the diffusion coeff.: $\delta \sim \gamma_{sec} - \gamma_{prim}$

CR Anisotropy

♦ CR anisotropy has an enhancement in exactly the range of the bump
 ♦ Indicates the local origin of the bump

Local SNR?

- The TeV bump has to be made of the preexisting CRs with all their primaries and secondaries that have spent millions of years in the Galaxy!
- > CR particle
 reacceleration in a weak
 local shock

Epsilon Eridani and passing stars

- ♦ Distance-shock-size relation: $\zeta_{obs}(pc) \sim 100 \sqrt{L_{\perp}(pc)}$; for sufficiently large bow shocks, L_⊥ = 10⁻³-10⁻² pc, then the distance is ζ_{obs} = 3-10 pc (Malkov & IVM'2021, 2022)
- \diamond <u>s Eri: K2 dwarf (5 000 K</u>), 0.82 M_{\odot}, 0.74 R_{\odot} (preferred)
- ♦ Distance 3.2 pc
- ♦ Speed 20 km/s (a bit small, but has a strong stellar wind)
- \diamond Well aligned with the direction of the local magnetic field within 6.7°
- ♦ Huge astrosphere 8000 au, 47' as seen from Earth (larger than the Moon!)
- \diamond Mass loss rate 30 \dot{M}_{\odot}
- ◊ ε Indi: triplet K4.5V (0.77 M_☉) + T1.5 (0.072 M_☉) + T6 (0.067 M_☉)
- ♦ Distance 3.6 pc
- \diamond Speed 40.4 km/s (radial)
- \diamond Scholz's Star: duplet M9.5 (0.095 M $_{\odot}$) + T5.5 (0.063 M $_{\odot}$)
- \diamond Distance 6.8 pc
- ♦ Speed 82.4 km/s (radial)

 \diamond Any local shock with a small Mach number

Bump formation

- \diamond Moderate reacceleration by $\times 1.5-2$
- \diamond Low-energy particles do not reach the observer as they are convected downstream by the ISM flow
- \diamond High-energy particle loss from the flux tube

- \diamond Only 2 (3) free parameters fixed from CR proton spectrum
- ♦ Use local interstellar spectrum (LIS) below the bump
- \diamond The steeper the spectrum of ambient particles – that larger the bump

Malkov & IVM'2021, 2022

CRA • Chicago • May 19, 2023 :: IVM 29

Table 1. Model parameters and fit results for the proton spectrum. **Parameters** $\chi^2_{\rm min}/{\rm dof}$ Parameter (St. err. %) $q \quad K = (\gamma + 2) / (q - \gamma)$ $R_0(GV)$ $R_L(GV)$ dof 2.24×10^5 (28%) Realistic Model (RM) 5878 (3.5%) 4.2 3.59 (4.9%) 76-3 0.10 Loss-Free Model (LF) 4795 (3.2%) 4.7 0.19 2.58 (2.9%) 76-2 ∞ q=3r/(r-1) $\gamma_s + 2$ $f_s(R) = A_s R^$ exp Table 2. Input parameters for CR species derived from their LIS (Boschini et al. 2020b). - parameters fixed from CR proton spectrum Parameters protons helium boron carbon $A_{\rm s} \,({\rm m}^{-2} \,{\rm s}^{-1} \,{\rm sr}^{-1} \,{\rm GV}^{-1})$ 2.32×10^{4} 3410 79 109 AMS-02 He AMS-02 C 0 AMS-02 err. AMS-02 err. 2.85 2.76 2.76 3.1 Ys DAMPE He CALET C 8[.]10³ **CREAM He** ATIC He ATIC C Flux R^{2.7} (m⁻²sr⁻¹s⁻¹s⁻¹GV^{1.7}) 01 00 05 NUCLEON He CREAM C **RM He** NUCLEON C RM C A_s , γ_s – fixed normalization and spectral Helium index of the LIS below the bump (individual for each species) \diamond LIS for H-Ni are given in Boschini+'2020 Carbon x10 1·10³ \diamond Model reproduces spectra of ALL CR species with only 2 (3) parameters fixed from the proton spectrum Rigidity (GV) 10⁵ 5.10^{2} 10² 10³ 10⁴ 106 Malkov & IVM'2021, 2022

Example: B/C ratio

B/C is better measured than the spectrum of Boron

Malkov & IVM'2021, 2022

At the end, stars may be affecting our lives indeed $\stackrel{\smile}{\smile}$

Thanks!!

Conclusion

