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:: take home message ::


 We look for UHECR anisotropies
, Harmonic space: global properties
� Auto-correlation: large scales
� Cross-correlation with galaxies: small scales
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:: harmonic ::

Here we are interested in angular harmonic space. Why?

It captures the global structure of anisotropies and their scalesIt is more robust wrt magnetic field details © Tinyakov & FU, 2014It has a very elegant and powerful math description
In harmonic space

Φ(n̂) = ∑
ℓm

aℓmYℓm(n̂)
we find the autocorrelation AC
Cℓ = 1

2ℓ + 1

∑
m

|a∗
ℓmaℓm|



:: harmonic ::

Here we are interested in angular harmonic space. Why?

It captures the global structure of anisotropies and their scales

It is more robust wrt magnetic field details © Tinyakov & FU, 2014It has a very elegant and powerful math description
In harmonic space

Φ(n̂) = ∑
ℓm

aℓmYℓm(n̂)
we find the autocorrelation AC
Cℓ = 1

2ℓ + 1

∑
m

|a∗
ℓmaℓm|



:: harmonic ::

Here we are interested in angular harmonic space. Why?

It captures the global structure of anisotropies and their scalesIt is more robust wrt magnetic field details © Tinyakov & FU, 2014

It has a very elegant and powerful math description
In harmonic space

Φ(n̂) = ∑
ℓm

aℓmYℓm(n̂)
we find the autocorrelation AC
Cℓ = 1

2ℓ + 1

∑
m

|a∗
ℓmaℓm|



:: harmonic ::

Here we are interested in angular harmonic space. Why?

It captures the global structure of anisotropies and their scalesIt is more robust wrt magnetic field details © Tinyakov & FU, 2014It has a very elegant and powerful math description

In harmonic space
Φ(n̂) = ∑

ℓm
aℓmYℓm(n̂)

we find the autocorrelation AC
Cℓ = 1

2ℓ + 1

∑
m

|a∗
ℓmaℓm|



:: harmonic ::

Here we are interested in angular harmonic space. Why?

It captures the global structure of anisotropies and their scalesIt is more robust wrt magnetic field details © Tinyakov & FU, 2014It has a very elegant and powerful math description
In harmonic space

Φ(n̂) = ∑
ℓm

aℓmYℓm(n̂)

we find the autocorrelation AC
Cℓ = 1

2ℓ + 1

∑
m

|a∗
ℓmaℓm|



:: harmonic ::

Here we are interested in angular harmonic space. Why?

It captures the global structure of anisotropies and their scalesIt is more robust wrt magnetic field details © Tinyakov & FU, 2014It has a very elegant and powerful math description
In harmonic space

Φ(n̂) = ∑
ℓm

aℓmYℓm(n̂)
we find the autocorrelation AC
Cℓ = 1

2ℓ + 1

∑
m

|a∗
ℓmaℓm|



:: observations ::

© Biteau et al., 2019



:: cross correlation ::

i. The measured UHECR flux anisotropy expands as∆CR(n̂) = ∑
ℓm aCR

ℓmYℓm(n̂)
ii. The galaxy density anisotropy instead is∆g(n̂) = ∑

ℓm a
gal
ℓmYℓm(n̂)

iii. If UHECRs come from galaxies we expect that
aCR

ℓm ∝ a
gal
ℓm

iv. The angular, harmonic-space, cross-correlation is defined as
Xℓ = 1

2ℓ + 1

∑
m
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ℓm a

gal
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Noise
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:: kernels ::

The ’observed’ UHECR flux anisotropy is given by
∆CR(n̂,Ecut) = ∫ dχ φCR(χ) δs(z , χn̂)

where the radial kernel φCR(χ) ∼ α(z ,Ecut; γ,Z )
The galaxy anisotropy is given by
∆g(n̂) = ∫ dχ φg(χ) δg(z , χ n̂)

where the radial kernel φg(χ) ∼ χ2 w (χ) n̄g,c(χ)
The (optional) weights w(χ) account for

the probability that a galaxy at distance χis the origin of an UHECR above Ecut
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:: kernels ::

Ecut = 40 EeV

Ecut = 63 EeV
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:: modelling uhecrs ::

d UHECR Sources
Ecut = 40, 63, 100 EeV with 1000, 200, 30 events

g Primaries, three examples: H1, O16, Si28Injection: γ = 2.60, γ = 2.10, γ = 1.50 © di Matteo & Tinyakov, 2018
Ï for Si28 we cut at Emax = 280 EeV

e UHECR KernelAttenuation α(z ,Ecut; γ,Z ) calculated with SimProp
f Magnetic beamSmearing with σ ∼ 1deg (40Z /E )/(sin2 b + 0.15) © Pshirkov, Tinyakov & FU, 2013

Ï we smear with the max angle within a given sky patch
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:: rotation measures ::

© Pshirkov, Tinyakov & FU, 2013



:: smearing ::
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:: hydrogen ::
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:: oxygen16 ::
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:: silicium28 ::
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:: hydrogen ::

101 102 103

Multipole

0

1

2

3

4

5

S
N

R

AC H1

101 102 103

Multipole

XC H1

100 EeV

63 EeV

40 EeV

101 102 103

Multipole

AC+XC H1

© FU, Camera, Alonso, ongoing



:: oxygen16 ::
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:: hydrogen or iron ::
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:: total power ::

0 10 20
CCR CR

0

10000

20000

30000

C
ou

n
ts

H1

Fe56

−1 0 1 2
Cg CR

0 10 20

Cg CR
opt

© Tanidis, FU, Camera, 2022



:: how much iron ::
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:: summary ::

Angular anisotropies are a useful tool to understand UHECRsWe know the ACs, dipole, quadrupole, but it is hard to go furtherThe XC could pick up anisotropies at smaller scales with current dataUsing both AC + XC could disentangle magnetic fields and compositionWe need to study the impact of magnetic fields with simulationsThe same tools can be used for astro neutrinos: ongoingTry to see if the cross-correlation can be detected

w/Camera+Alonso A&A 2021 :: w/Tanidis+Camera JCAP 2022
...and work in progress...
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