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Tibet Air Shower Array 

@Yangbajing in Tibet, China  ( 90.522 E, 30.102 N, 4,300 m a.s.l.) 

Scintillation Counter Array : 0.5 m2 x 789 counters  

Effective area                        : ~ 37,000 m2 

Energy range                         : ~ TeV - 100 PeV 

F.O.V.                                       : ~ 2 sr 
Relative timing information          Arrival direction 

                                                          Angular Resolution ~0.4 @10TeV 

Charge information                        Primary cosmic-ray energy 

                                                          Energy Resolution ~70% @10TeV  

This presentation uses data from Nov 1999 to May 2010 
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Anisotropy at TeV energies 
Tibet III, Nov 1999 - May 2010     

Right Ascension () 
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+ heliospheric modulation 

Possible causes (※ with declination bias) 



CR orbit  

in MHD heliosphere model 

𝑓(𝐫𝐵, 𝐩𝐵, 𝑡) 

observation 

𝑓(𝐫𝐸 , 𝐩𝐸 , 𝑡) 

𝐷𝑓 =
𝜕𝑓

𝜕𝑡
+
𝑑𝐫

𝑑𝑡
∙
𝜕𝑓

𝜕𝐫
+
𝑑𝐩

𝑑𝑡
∙
𝜕𝑓

𝜕𝐩
=

𝜕𝑓

𝜕𝑡
𝑐

≈ 0 

Phase-space density distribution of CRs: 𝑓(𝐫, 𝐩, 𝑡) 

𝑓 𝐫𝐸 , 𝐩𝐸 , 𝑡 ≈ 𝑓(𝐫𝐵, 𝐩𝐵, 𝑡) 
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Liouville’s theorem 

Mapping of CR intensity between 
Earth and outer boundary  
 
 
CR anisotropy @ outer boundary 

M. Zhang, Journal of Physics,  
Conference Series 767, 012027 (2016) 

Intensity of CRs with pE @ Earth 
∥ 

Intensity of CRs with pB @ Outer  
Boundary of heliosphere 

Recent study based on intensity mapping (1)  
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Data Model 
Zhang+, ApJ, 889, 97 (2020) 

Recent study based on intensity mapping (2)  
Anisotropy @ Earth 

Anisotropy @ outer boundary 

(Reduced c2 = 4.5) 

Dipole amplitude A1 along BISM is dominant  
CR density gradient direction (∇f) close to Vela  

Dipole amplitude along BISM 

Dipole amplitude along BISM x ∇f 



Dipole amplitude along BISM 

Dipole amplitude along BISM x ∇f 
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Data Model 
Zhang+, ApJ, 889, 97 (2020) 

Recent study based on intensity mapping (2)  
Anisotropy @ Earth 

Anisotropy @ outer boundary 
(Reduced c2 = 4.5) Reduced c2 = 4.5  

 
 

Modeling must be improved 

Intensity mapping using only 4 TeV monoenergy protons 

 
 

CR energy spectrum & composition must be considered 
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MHD model heliosphere used in this work 

By N. Pogorelov  

tail nose 

Zhang+, ApJ, 889, 97 (2020) 



 Set Earth at 4 positions (±1AU, 0, 0), (0, ±1 AU, 0) 

 Shoot CR particles with reversed charge into MHD heliosphere  

— initial directions (4 samplings for each data pixel) 

— Observed rigidity distribution taken into account 

 Record CR momentum directions @ outer boundary 

— Boundary defined as a surface where: 

          Deviation in          strength from          < 0.1%, and 

          Deviation in          direction from          < 0.1 
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Intensity mapping method 

XZ plane 
(Y=0) 

Outer boundary 
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 Air shower generation and Air Shower array response simulation  
 Analyze MC events in the same way as experimental data 

Energy spectrum & composition 

 CR energy spectrum & composition based on direct measurements 
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M.Shibata+, ApJ, 716, 1076 (2010) 

1 PeV  

Evaluate weight factor    

Evaluate how different CR species with different energies  
contribute to the observed anisotropy using MC sim. 
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Dec =  80

Weight factor for each declination band (MC) 

MC 



How to derive anisotropy @ outer boundary 
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                 Repeat 1) – 4) and obtain best-fit parameter values that minimize c2 

1) Assume a model of relative intensity @ outer boundary as:  

2) Map            to Earth 
3) Normalize the average of mapped model intensity @ Earth to one  
     for each decl. band 

4) Calculate c2 between normalized model intensity and experimental data                                      
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c2 / ndf = 3320 / 2052 = 1.62 

Data @Earth Model @Earth 

Model @ Boundary 
              Bism     interstellar B  
        VH, VHe    interstellar H & He flow 
                 ecliptic plane 

magnetic equator 
hydrogen deflection plane 
bestfit CR density gradient G 

Results: fitting by dipole & quadrupole flows 

A1⊥  is not so small; about half of A1|| 
CR density gradient direction (G) not close to Vela  

Dipole amplitude along BISM Dipole amplitude along BISM x ∇n 

Vela 



Lmax = 24 (624 parameters) 
c2 / ndf =  1393 / 1432 = 0.973 (76.4 %) 

Data @Earth Model Fitting @Earth 

Model @ Boundary 

Results: fitting by spherical harmonics 

ecliptic plane 
magnetic equator 
hydrogen deflection plane 

              Bism     interstellar B  
        VH, VHe    interstellar H & He flow 
                  

Unrealistic small-scale anisotropy appears @ outer boundary 
14 
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Results: Power spectrum 

Abeysekara+, ApJ, 889, 97 (2020) 

 L ≥ 20 terms are needed @ outer boundary to get reasonable c2 
 Spectrum flatter @ outer boundary than @ Earth 



CR intensity distributions at different boundaries? 
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Results: intensity distributions @ different outer boundaries 
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Effect of particle scattering with magnetic irregularities 
 in the heliosphere ?? 
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 Diffusion coefficient 
Moskalenko+, ApJ, 565, 280 (2002) 

Mean free path 

L 〜 5 * 106 AU for 7 TeV proton 

Yasue+, Planet Space Sci. 33, 1057 (1985) 

Assuming T〜60 days from boundary to Earth 
  

➡ dl = 1 * 104 AU for 7 TeV proton 
 
➡  



Lmax = 5 (35 parameters) c2/ndf = 2042/2021 = 1.01 (36 %) 

Data @Earth Model Fitting @Earth 

Model @ Outer  boundary 

Max: +2.3% 
Min: -1.2% 

+0.2% 

-0.2% 

Results: best-fit relative intensity distributions  

              Bism     interstellar B  
        VH, VHe    interstellar H & He flow 
                 ecliptic plane 

magnetic equator 
hydrogen deflection plane 
bestfit CR density gradient G 

 L ≤ 5 terms are sufficient @ outer boundary 
to get reasonable c2 

 Amplitude @ outer boundary becomes 
     percent-level 
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Results: Power spectrum 

Abeysekara+, ApJ, 889, 97 (2020) 

Terms with L ≥ 3 larger @ outer boundary than @ Earth 
➡ intensity-mapping method needs more improvement ?? 
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Summary 
Quantitative study on the origin of TeV CR anisotropy  

based on intensity mapping 

Future prospects 
 Suppress the apparent high-order terms in the power spectrum 
     ➡ Using a “snapshot” MHD model of the heliosphere may be a problem  
          (Data covers 10 years (2000-2009) of A<0 phase of 23rd solar cycle) 
 Compare the results with other MHD heliosphere models  
                                                                                  (e.g. by Washimi+ and Opher+) 
 Examine the observed energy dependence of anisotropy around 100 TeV 

 Rigidity distribution of observed CR particles taken into account 
 Modeling @ boundary improved using spherical harmonics 
     ➡ Intensity distribution @ boundary needs L ≥ 20 terms  
          to get reasonable c2 

 Tentative study of scattering by magnetic irregularities in the heliosphere  
     ➡ Intensity distribution @ boundary can be expressed with L ≤ 5 terms  
          But still terms with L ≥ 3 larger @ boundary than @ Earth 
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Thank you  
for you attention! 
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Distribution of the time from Earth to Boundary  

Scattering angle distribution 
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A < 0  

Washimi MHD model A Washimi MHD model B 

A > 0  
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Power spectrum 
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Large-scale: less affected by Bhelio structure 

Mid- to small-scale:  

affected by Bhelio structure 

A < 0 
A > 0 


