UHECR Anisotropies

Glennys Farrar New York University

in collaboration with **Teresa Bister**, Radboud Univ. building on work with Chen Ding and Noemie Globus Ap.J.Lett.2021

Today talk

- Large Scale Structure & UHECR anisotropy
- "Bias"
- Composition anisotropies
- Source density constraints
- Astrophysical implications of source density constraints
- if time: limits on local GRB protonic contribution

G. Farrar, CRA23

What we know about UHECRs:

- No single (apparent) dominant source (or source class ???)
- Complex composition
- Highest energy Galactic CRs overlap the lowest energy extragalactic UHECRs
- Spectrum shaped by acceleration, propagation and interactions near source
 - Multi-messenger approach is essential

What we NEED TO know:

- Are sources weak and abundant or strong and rare?
- What are the principal source types?
 - Sources may not all be visible today (e.g., transients)
- What are the sources' spectra and composition?
 - Are UHECR sources (approximately) standardized?
- Better knowledge of magnetic fields
- Task requires fortitude & collective effort...

Source distribution ⇔ local matter distribution, with bias

DGF 21/ BF23 use JF12 Cosmicflows-2 (Hoffmann+18)

DGF 21: crude treatment of extragalactic propagation BF23: accurate propagation; self-consistent fit to composition

Future work

UF23 magnetic field models (inc. random)

Pomerede+20 discovered South Pole Wall @~160 Mpc Cosmicflows-3

injection following LSS

Cosmicflows2 *thanks to N. Globus* CRs: **Peters cycle**

Our analysis:

propagation with CRPropa

 \rightarrow gives "illumination"

Galactic magnetic field deflections: JF12, l_c=30 kpc

adapt injection, via likelihood:

- compare model to data from Pierre Auger Observatory
 - dipole direction + amplitude in 3 energy bins
 - unfolded energy spectrum
 - shower depth distributions

on Earth: spectrum, composition & directions of observed CRs

6

More accurate Illumination Maps (DGF was pretty good but not perfect)

differences increase with distance due to change in propagation modeling

Dipole amplitude predictions

Dipole direction

predictions close to measured direction within model uncertainties

New Studies: 1 — "BIAS"

- Large Scale Structure model of UHECR anisotropy: good
- "Bias"
- Composition anisotropies
- Source density constraints
- Astrophysical implications of source density constraints

Too anisotropic without low-density regions

Need both low- & high-density regions in LSS

Composition anisotropy

Auger FD: composition anisotropy > 5 EeV (red regions ~5 g/cm^{^2} lighter than mean, blue regions ~5 g/cm^{^2} heavier)

→ larger magnetic field in Galactic plane captures heavy particles?

LSS injection + JF12 GMF \rightarrow very small composition anisotropies (also in DGF21) lighter regions weakly correlated with flux

14

Rigidity-dependent Magnification can generate Composition anisotropy

New Studies: 3 — Source density

- Large Scale Structure model of UHECR anisotropy: GOOD but improvable
- "Bias" disfavored
- Composition anisotropies possible with low source density
- Source density constraints
- Astrophysical implications of source density constraints

Sampling source density: illumination maps

Can we place limits on the source density by studying the predicted model arrival ¹⁷ directions?

Sampling source density: Dipole Direction

skymap: 68% contours of dipole direction

- grey: dipole directions from drawing N_{CRs} from continuous density model
 → statistical uncertainty
- densities >10⁻⁶ / Mpc³: Dipole direction varies within statistical
- densities ~10⁻⁷ / Mpc³: Dipole direction varies significantly
- densities <=10-8 / Mpc³: dipole direction is random

Sampling source density: Dipole Amplitude

- grey band: 68% statistical uncertainty in continuous model
- densities >10⁻⁶ / Mpc³: Amplitude varies within stat. uncertainty
- densities ~10-7 / Mpc³: dipole amplitudes become larger
- densities <=10⁻⁸ / Mpc³:

amplitudes almost never within statistical range (arrival directions very anisotropic)

Sampling source density: Dipole Amplitude and Direction

fraction within statistical uncertainty:

- behave as continuous model: 68% within 68% statistical
- combining direction & amplitude: almost independent (0.68² = 0.46)

number of examples where dipole direction & amplitude fit at the same time: 0 / 1000

Sampling source density: Angular Power Spectrum

cl's are even more constraining on source density than dipole

Composition anisotropy? Example @10⁻⁷ / Mpc³ that describes dipole direction & amplitude well

Hard to get such a big composition anisotropy while respecting other constraints

Astrophysical considerations

- Large Scale Structure model of UHECR anisotropy: GOOD but improvable
- "Bias" disfavored
- Composition anisotropies possible with low source density
- Source density constraints
- Astrophysical considerations of source density constraints

Energetics condition on accelerators

(see GF+A.Gruzinov ApJ2009 for derivations)

- Acceleration requires: size x B > $10^{16} R_{18.5} \Gamma^{-1}$ (Larmor radius fits)
- Poynting Luminosity ~ c/6 Γ⁴ B² L² ~ 10⁴² (R_{18.5})² erg/s → (roughly!!!)
 Minimum Bolometric Luminosity of UHECR sources ~ 10^{42.5} (R_{18.5})² erg/s
- Volumetric UHECR power (Muzio, Unger, GF2019): 1044.8 erg/s Mpc-3
- \Rightarrow n_{src} \leq 10⁻³ Mpc⁻³ energetics requirement gives a weak limit

Density conditions on UHECR accelerators (BF23: need n ≥ 10⁻⁶ Mpc⁻³)

- Luminous IR galaxies (aka starburst galaxies)
 - GF, A. Berlind, I. Zaw ApJL 2009: enhanced correlation LIRG & UHECRs >57 EeV
 - \gtrsim 50% of local AGN qualify as SBG (Xie+21)
 - n_{SBG} ≈ 10⁻⁴ Mpc⁻⁴

- Fotopoulou+16 $n_{XAGN} \sim 10^{-6} Mpc^{-4}$
 - X-ray (5-10 keV) AGN (L_X>10⁴⁴ erg/s)

G. Farrar, CRA23

Possible contribution of local GRBs to Auger? (Bister, GF, Muzio, in prep)

Motivations: transient source \leftrightarrow factor-2 energy range MUF21: fit improves with some protons

²⁶ G. Farrar, CRA23

Possible contribution of local GRBs to Auger? KILLED BY ANISOTROPY CONSTRAINTS

Need ~ 80 protonic transients to "hide" them Auger's anisotropy limits are *very* sensitive!

> ²⁷ G. Farrar, CRA23

Summary

- Teresa Bister+GF 2023: fixed approximations in Ding, Globus, Farrar ApJL21
 - Large Scale Structure still gives generally good accounting of Auger anisotropies
 - Predicted dipole magnitude is somewhat low: random field smaller than in JF12 model or $L_{coh} < 30$ pc
 - TO-DO: explore uncertainties from Large Scale Structure and GMF model uncertainties
- New constraints on source density and "UHECR bias"
 - Source density >~ 10⁻⁶ Mpc⁻³
 - Auger dipole prefers no "UHECR bias" (UHECR sources distributed in all mass density regions)
- Other topics:
 - Combined constraints of dipole magnitude & direction, & lack of higher multipoles, is hard to reconcile with composition anisotropy reported by Auger-FD.
 - Transient(s) with light composition (e.g., GRBs) cannot be responsible for "fine structure" in Auger spectrum and σ(Xmax)

BACKUP

JF12 GMF impact on SBG images (50 EeV)

30

Fit only dipole (not spectrum & composition)

60°