New Models of the Magnetic Field of the Galaxy M. Unger (KIT) in collaboration with G.R. Farrar (NYU).

NGC628 M. Krause 2019; T. Stanev ApJ97; JF12 Farrar&Sandstrom

Cosmic-Ray Anisotropy Workshop (CRA) 2023

Modeling of the Coherent Galactic Magnetic Field (GMF)

Aim: Describe large-scale structure of GMF with simple parametric forms

Observables:

adapted from Hasegawa+13 and Pelgrims+18

2/29

Popular GMF Models:

	S97	Jaffe10*	PT11	JF12	Planck16	TF17**
parameter fit	×	1	1	1	×	1
extragalactic RMs	×	1	 Image: A second s	1	×	1
polarized synchrotron	×	1	×	✓	1	X
polarized dust	×	×	X	X	1	X
$\nabla \mathbf{B} = 0$	X	X	X	1	×	1

Jansson& Farrar Magnetic Field Model (JF12) R. Jansson & G.F. Farrar, ApJ 757 (2012) 14

three divergence-free components:

- disk field, ($h \lesssim 0.4$ kpc)
- toroidal halo field ($h_{\rm scale} \sim 5.3$ kpc)
- "X-field" (halo)
- 21 parameters adjusted to 6605 data points

Model Optimization

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric GMF Models
- Results

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric GMF Models
- Results

Extragalactic Rotation Measures used for JF12

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

5/29

liaht

agnetic field

Plasma

Extragalactic Rotation Measures 2023

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

light

Magnetic field

Plasma

- antenna temperature: $T_{syn} \propto \nu^{-(p+3)/2} \equiv \nu^{\beta_S}$
- electron spectral index p: ~ 2 at source, ~ 3 after cooling
- $\beta_S \sim -3 \rightarrow T_{\rm syn}(20 \ {\rm Hz})/T_{\rm syn}(30 \ {\rm Hz}) \approx 3.4$

calibration uncertainty? cosmic-ray spectral index?

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric GMF Models
- Results

Thermal Electron Models

15

10

y [kpc]

-10

-15

z [kpc]

112 pulsar DMs

189 pulsar DMs

Cordes&Lazio arXiv:0207156 Yao, Manchester & Wang, ApJ 2017 11/29

Thermal Electron Halo

reasonably well-constrained from DMs of pulsars in globular clusters

YMW16

NE2001

 ΔDM : data-model residual without exponential halo (preliminary)

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric GMF Models
- Results

DRAGON calculation constrained by local lepton flux and D_0/H from B/C https://github.com/cosmicrays/DRAGON

Cosmic-Ray Electron Model

- $D_0/H = \text{const from B/C}$
- halo half-height H currently not well constrained Weinrich+20, Evoli+20, Maurin+22

\rightarrow large uncertainty in vertical $n_{\rm cre}$ profile!

homogenous and isotropic diffusion $D_0 \propto R^{\delta}$ (rigidity R)

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric GMF Models
- Results

GMF Model Improvements – Disk Field

- divergence-free Fourier-expansion of $B_{\phi}(r)$ at reference radius
- avoids sharp radial discontinuities of JF12
- free pitch angle and "magnetic arms" (number of Fourier modes)

GMF Model Improvements – Halo X-Field

• fix JF12 discontinuities at z = 0 and transition to $\theta_X = 49^{\circ}$

GMF Model Improvements – Halo Field

- evolve X-field via ideal induction equation $\partial_t \mathbf{B} = \nabla \times (\mathbf{v}_{rot} \times \mathbf{B})$
- radial and vertical shear of Galactic rotation generates toroidal field

no separate X- and torodial halo needed!

"Twisted X-field"

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric GMF Models
- Results

Fit of RM/Q/U (χ^2 /ndf = 7759/6500 = 1.19)

model describes large-scale features of 6520 data points with only 20 parameters!

UF23 Model Variations

id	disk	halo			$n_{ m e}$		$h_{\rm cre}$		χ^2/ndf	
iu		toroidal	ро	loidal	model	κ	(kpc)	Q	χ / nur	
Parametric models										
а	UF	JFsym	UF	logistic	YMW16	0	6	(W+P)/2	7923 / 6500 = 1.22	
b	UF	twist	UF	logistic	YMW16	0	6	(W+P)/2	8324 / 6504 = 1.28	
С	UF	JFsym	UF	gauss	YMW16	0	6	(W+P)/2	8298 / 6500 = 1.28	
d	UF	JFsym	UF	sech2	YMW16	0	6	(W+P)/2	8381 / 6500 = 1.29	
е	UF	JFsym	UF	expo	YMW16	0	6	(W+P)/2	8431 / 6500 = 1.30	
f	UF	JFsym	FTc	logistic	YMW16	0	6	(W+P)/2	7926 / 6500 = 1.22	e e e e e e e e e e e e e e e e e e e
The	ermal el	ectrons								YMW16
g	UF	JFsym	UF	logistic	NE2001	0	6	(W+P)/2	7759 / 6500 = 1.19	10 m ²
ň	UF	twist	UF	logistic	NE2001	0	6	(W+P)/2	8180 / 6504 = 1.26	
i	UF	JFsym	UF	gauss	NE2001	0	6	(W+P)/2	8079 / 6500 = 1.24	
j	UF	JFsym	UF	logistic	YMW16	-0.4	6	(W+P)/2	7905 / 6500 = 1.22	-15
Cosmic-ray electrons										
k	UF	JFsym	UF	logistic	YMW16	0	8	(W+P)/2	7940 / 6500 = 1.22	
T	UF	JFsym	UF	logistic	YMW16	0	10	(W+P)/2	7939 / 6500 = 1.22	-11%-
Synchrotron Map										alipe
m	UF	JFsym	UF	logistic	YMW16	0	6	CG23	9758 / 6500 = 1.50	
n	UF	JFsym	UF	logistic	NE2001	0	6	CG23	9551 / 6500 = 1.47	
0	UF	JFsym	UF	logistic	YMW16	0	6	Р	11013 / 6500 = 1.69	
р	UF	JFsym	UF	logistic	YMW16	0	6	W	8845 / 6500 = 1.36	

UF23 Model Ensemble

id	name	disk	toroidal	halo poloidal		$\stackrel{n_{ ext{e}}}{model}$ κ		$h_{ m cre}$ (kpc)	QU	χ^2/ndf
1	base	UF	JFsym	UF	logistic	YMW16	0	6	(W+P)/2	1.22
2	xr	UF	JFsym	UF	expo	YMW16	0	6	(W+P)/2	1.30
3	ne	UF	JFsym	UF	logistic	NE2001	0	6	(W+P)/2	1.19
4	κ	UF	JFsym	UF	logistic	YMW16	-0.4	6	(W+P)/2	1.22
5	twist	UF	twist	UF	logistic	NE2001	0	6	(W+P)/2	1.26
6	cre	UF	JFsym	UF	logistic	YMW16	0	10	(W+P)/2	1.22
7	syn	UF	JFsym	UF	logistic	YMW16	0	6	CG23	1.50

deflection angle differences at 10 EV:

Example: Thermal and Cosmic-Ray Models

NE2001, YMW16, left to right $h_{cre} = 4, 6, 8, 10 \text{ kpc}$

Magnetic Pitch Angle

Reid+ApJ19

- fitted magnetic pitch angle in disk $(11 \pm 1)^{\circ}$ (error dominated by n_e)
- pitch angle of local arm $(11.4 \pm 1.9)^{\circ}$ (fit of HMSFR with parallaxes)

23/29

The RM-PI Puzzle

Longstanding Problem:

derived field $\widehat{B}(RM) < \widehat{B}(PI)$

Proposed Solutions:

• $\underline{n_{cre} - B \text{ correlations:}} \widehat{B}(PI) > B_{true}$

 \rightarrow not observed in MHD simulations ($l < l_{outer}$) Seta+18

• <u>anisotropic ("striated") random fields</u>: $\widehat{B}(PI) > B_{true}$

prescription:

 $B=(1+\xi)B_0$ Jansson&Farrar ApJ12

(striation enhances PI but not RM!)

• $\underline{n_e - B}$ anti-correlation: $\widehat{B}(RM) < B_{true}$ prescription:

$${
m RM} = {
m RM}_0 \left(1 + rac{2}{3} \, \kappa \, rac{\langle b^2
angle}{B^2 + \langle b^2
angle}
ight)$$
 beck+A&A03

(anti-correlation diminishes RM)

The RM-PI Puzzle

left to right: $\kappa = -1... + 1$, black point is $\kappa = 0$

- no stration needed at $\kappa \sim -0.4$
- χ^2 minimum at $\kappa = -0.4$ ($\Delta \chi^2 = -23$ wrt. $\kappa = 0$)

Summary

Major Overhaul of JF12 GMF Model

- new RM data
- new synchrotron sky maps
- improved auxillary models (n_e and n_{cre})
- smooth disk-field
- unified halo model

Main Results:

- JF12 dipolar X-field robust <u>dynamo</u>?
- magnetic pitch ∼ spiral pitch <u></u>fcoherent?
- $n_e B$ anti-corr. is alternative to striation \rightarrow larger *B* estimates
- GMF model ensemble
 - \rightarrow cosmic-ray deflection uncertainties

Outlook

Apply to CR Analysis

Incorporate New Data (existing and future) pulsar RMs, low-frequency QU, I_{syn} + variances, dust pol. tomography, ...

Foreground Modelling

local bubble, loops and spurs.