CONCLUSIONS 00

RESULTS FROM THE HIGH ALTITUDE WATER CHERENKOV OBSERVATORY

Miguel Mostafá

PennState Eberly College of Science

Cosmic Ray Anisotropy Workshop 2023

Loyola University - Chicago May 16-19, 2023

Image courtesy of Philip Suárez Mauro

OUTLINE

(BRIEF) INTRODUCTION & MOTIVATION

DESCRIPTION OF THE HAWC OBSERVATORY

CR-RELATED RESULTS

CONCLUSIONS & OUTLOOK

Introduction 0000	HAWC o●	Results 000000000000000	Conclusions 00
	ŀ	IAWC	
► large i	nstantaneous sky c	overage	
► long, ι	uninterrupted obser	vation periods	
Cygnus	Big Dipper Markarian 501	Ca Markarian 421 Crab Nebi	ssiopeia ŭla
Sagittarius	Milky Way	Geminga) Orion

The HAWC Observatory: NIM A1052 (2023) 168253

COSMIC RAY ANISOTROPY (HAWC)

► Anisotropy in energy bins (from 2.0 to 72.8 TeV)

differential relative intensity

angular power spectrum

► Anisotropy in energy bins (from 2.0 to 72.8 TeV)

differential relative intensity

angular power spectrum

angular power spectrum

angular power spectrum

angular power spectrum

► Anisotropy in energy bins (from 2.0 to 72.8 TeV)

differential relative intensity

angular power spectrum

angular power spectrum

angular power spectrum

INTRODUCTION	HAWC	RESULTS	Conclusions
0000	00	00000000000000000	00

COSMIC RAY ANISOTROPY (HAWC+ICECUBE)

Anisotropy at 10 TeV

angular power spectrum

CR anisotropy at 10 TeV, HAWC+IceCube: ApJ 871 (2019) 76

The 3rd HAWC Catalog of VHE γ -ray Sources

Significance map (point-source hypothesis)

Galactic plane I; 0.0 $^{\circ}$; 1523 days

The 3HWC Catalog, HAWC Collaboration: ApJ 905 (2020) 76

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	00000000000000	00

NEW TEV γ-RAY SOURCES ► PWN DA 495 (2HWC J1953+294)

11

INTRODUCTION	HAWC	RESULTS	Conclusions
0000	00	0000000000000	00

New TeV γ -ray Sources

HAWC+Fermi-LAT detection of J2006: *ApJL* **903** (2020) L14

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	00000000000000	00

NEW TEV γ-RAY SOURCES ► SNR G54.1+0.3 (2HWC J1930+188)

VERITAS counts map

VERITAS+Fermi-LAT+HAWC: ApJ 866 (2018) 24

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	00000000000000	00

NEW TEV γ-RAY SOURCES ► 3HWC J1928+178 and HAWC J1932+192

HAWC Collaboration: ApJ 942 (2023) 96

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	000000000000000	00

NEW TEV γ-RAY SOURCES ► 3HWC J1928+178 and HAWC J1932+192

3HWC significance map

HAWC Collaboration: ApJ 942 (2023) 96

HE Catalog, HAWC Collaboration: *PRL* **124** (2020) 021102

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	000000000000000	00

EVIDENCE OF 200 TEV γ rays

HAWC J1825-134, HAWC Collaboration: ApJL 907 (2021) L30

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	000000000000000	00

HE γ-RAY SPECTRA ► MGRO J1908+06

MGRO J1908+06, HAWC Collaboration: ApJ 928 (2022) 116

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	0000000000000000	00

HE γ-RAY SPECTRA ► MGRO J1908+06

MGRO J1908+06, HAWC Collaboration: ApJ 928 (2022) 116

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	000000000000000000000000000000000000000	00

HE γ-RAY SPECTRA & MORPHOLOGY ► HWC J2019+368

HWC J2019+368, HAWC Collaboration: *ApJ* **911** (2021) 143

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	000000000000000000000000000000000000000	00

HE γ-RAY SPECTRA & MORPHOLOGY ► HWC J2019+368

HWC J2019+368, HAWC Collaboration: ApJ 911 (2021) 143

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	000000000000000000000000000000000000000	00

VHE COSMIC-RAY ACCELERATORS

Cygnus Cocoon

SED from HAWC and LAT data

3HWC significance map

Cygnus Cocoon, HAWC Collaboration: Nat. Astro. 5 (2021) 465

INTRODUCTION	HAWC	RESULTS	CONCLUSIONS
0000	00	0000000000000	00

VHE COSMIC-RAY ACCELERATORS

Cygnus Cocoon

Cygnus Cocoon, HAWC Collaboration: Nat. Astro. 5 (2021) 465

INTRODUCTION	HAWC	Results	CONCLUSION
0000	00	00000000000000	• 0

CONCLUSION & OUTLOOK

 CR anisotropy HAWC catalog public! New TeV sources Pevatron candidates

Introduction	HAWC	RESULTS
0000	00	00000

CONCLUSION & OUTLOOK

- CR anisotropy HAWC catalog public! New TeV sources Pevatron candidates
- Other science contributions Dark matter, CRs, solar physics, particle physics, multi-messenger studies, diffuse emission, extended regions, EBL, realtime alerts...

Introduction	HAWC
0000	00

CONCLUSION & OUTLOOK

- CR anisotropy HAWC catalog public! New TeV sources Pevatron candidates
- Other science contributions Dark matter, CRs, solar physics, particle physics, multi-messenger studies, diffuse emission, extended regions, EBL, realtime alerts...
- Outrigger array completed Enhanced sensitivity above 10 TeV

THANK YOU VERY MUCH!

Image courtesy of Philip Suárez Mauro

BACK-UP SLIDES

MOST RECENT HAWC PAPERS

- "The High-Altitude Water Cherenkov Observatory in México: The Primary Detector," NIM A1052 (2023) 168253.
- "Searching for TeV Dark Matter in Irregular Dwarf Galaxies with HAWC Observatory," ApJ 945 (2023) 25.
- "Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data," ApJ 944 (2023) 166.
- "Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories," A&A 667 (2022) A36.
- "Detailed Analysis of the TeV Gamma-Ray Sources 3HWC J1928+178, 3HWC J1930+188, and the New Source HAWC J1932+192," ApJ 942 (2023) 96.
- "Gamma-Ray Emission from Classical Nova V392 Per: Measurements from Fermi and HAWC," ApJ 940 (2022) 141.

COSMIC RAY SPECTRUM

► H + He nuclei between 6 and 158 TeV

HAWC Collaboration: Phys. Rev. D 105 (2022) 063021

COSMIC RAY SPECTRUM

► H + He nuclei compared to other data

HAWC Collaboration: Phys. Rev. D 105 (2022) 063021

COSMIC RAY SPECTRUM

all particle spectrum between 10 TeV and 1 PeV

J.C. Arteaga-Velázquez for the HAWC Collab. at ECRS 2022