SECOND ORDER FERMI ACCELERATION IN GALAXY CLUSTERS

AIMS

- BRIEF OVERVIEW OF FERMI II AS SEEN IN GC
- TRIGGER INTEREST/FIND SYNERGIES WITH GALACTIC COMMUNITY

CRs sources in galaxy clusters (Brunetti+Jones 14 for review)

AGNs

Estimate of number of AGNs, life-time :

 $E_{CR} = 0.001 - 0.1 \times E_{ICM}$ (?)

- Thermal plasma in the bubbles
- Leptonic/hadronic

Galaxies

- About 100 massive galaxies per cluster (Berezinsky et al.97, ..)

- Fe abundance in the ICM (Voelk et al 96)

 $E_{CR}^{SN} = N_{SN} \eta_{CR}^{SN} E_{SN} \leq rac{[Fe]_{\odot} X_{cl} M_{cl,gas}}{\delta M_{Fe}} E_{SN} \eta_{CR}^{SN}$

 E_{CR} = 0.001-0.01 of E_{ICM} [CRprotons]

CR confinement

(Voelk et al. 96, Kang et al 96, Berezinsky et al 97,.. etc) ...

High Energy protons are CONFINED and ACCUMULATED in galaxy clusters for cosmological times : CRp are the dominant component

Radiation from Cosmic Rays in GC

WHY TURBULENT REACCELERATION ? (Schlickeiser+87, Brunetti+01, Petrosian 01)

Turbulent acceleration scenario

A 2744 NW ridge

20

10

0:14:00

Turbulence is generated during mergers (shocks, DM sloshing, instabilities etc) and powers reacceleration mechanisms based on second-order Fermi

[Brunetti+01, Petrosian 01, Fujita+03, Cassano+Brunetti 05, Brunetti+Blasi 05, Brunetti+Lazarian 07,11,16, Beresnyak+al 13, Miniati 15, Pinzke+ 17, Marchegiani 19, Nishiwaki+Asano 21,22]

TURBULENT REACCELERATION PHYSICS IN THE ICM

High res Cosmological Simulations

Turbulent accel physics : basic approach

Focus : compressive modes

(Brunetti+Lazarian 07,11, Beresnyak+ 13, Miniati 15, Brunetti 16, Pinzke+ 17)

Models are successful : reproduce current data

TURBULENCE & SHOCKS IN LSS

A399+A401 & A1758

Step toward the detection of cosmic filaments ?
 Magnetic field amplified on 3-5 Mpc
 GeV+ electrons (re?)accelerated

Turbulent acceleration & B in LSS ?? (Brunetti+Vazza 2020, PRL..)

- Massive pairs of (pre-merging) clusters form in biased high-density regions
- Several substructures (DM+baryonic clumps) orbiting in the filament/bridge
- Turbulence (and shocks) driven by substructures

Turbulence may drive

- B amplification .. up to 0.3-1 µG
- Particle acceleration

Reacceleration in solenoidal super-Alfvenic turbulence

[Brunetti & Lazarian 16, ...Xu & Zhang 17, Xu+18, ... Adiabatic Stochastic Acceleration]

Particles diffusing in super-Alfvenic turbulence experience cycles of positive and negative acceleration via interaction with collapsing (in reconnection regions) and expanding (in dynamo regions) magnetic field lines.

$$D_{pp} \propto p^2 \psi^{-3} \eta_B^{-1/2} \delta V^2 / L$$

$$\begin{pmatrix} \lambda_{mfp} = \psi l_A \\ \frac{B^2}{8\pi} \sim \eta_B F \tau_{edd} \end{pmatrix}$$

Although on much smaller scales/conditions, situations involving first order and second order-like Fermi acceleration are observed also in simulations of reconnection regions (Kowal et al 12, Dahlin et al 14, ... Guo et al 19, Comisso+Sironi 19, Lemoine+ 21)

EXPECTATIONS & FIRST OBSERVATIONAL TESTS

(Brunetti+Vazza 20, PRL..)

Turbo reacceleration models predict :

Steep spectrum emission, a >1.3-1.4, yet IC limit OK(!)
 Volume filling emission (increasing at lower frequencies)

SCIENCE ADVANCES | RESEARCH ARTICLE

ASTRONOMY

Magnetic fields and relativistic electrons fill entire galaxy cluster

Cuciti+ 22

Galaxy clusters enveloped by vast volumes of relativistic electrons

https://doi.org/10.1038/s41586-022-05149-3 Received: 23 February 2022

Article

V. Cucitl¹²¹², F. de Gasperin¹², M. Brüggen¹, F. Vazza¹³, G. Brunettl¹, T. W. Shimwell⁴, H. W. Edler¹, R. J. van Weeren⁵, A. Botteon^{23,5}, R. Cassano², G. Di Gennaro¹, F. Gastaldello⁶, A. Drabent⁷, H. J. A. Röttgering⁶ & C. Tasse^{1,0}

Andrea Botteon^{1,2,3}*, Reinout J. van Weeren¹, Gianfranco Brunetti³, Franco Vazza^{2,3}, Timothy W. Shimwell^{1,4}, Marcus Brüggen⁵, Huub J. A. Röttgering¹, Francesco de Gasperin^{3,5}, Hiroki Akamatsu⁶, Annalisa Bonafede^{2,3}, Rossella Cassano³, Virginia Cuciti^{3,5}, Daniele Dallacasa^{2,3}, Gabriella Di Gennaro⁵, Fabio Gastaldello⁷

Second order acceleration in Mega Halos (Nishiwaki, GB, et al 2023+)

Similar to RADIO BRIDGES

- Turbulence (solenoidal) from high res Cosmological simulations
- B amplified by turbulent dynamo
- NL Turbulent reacceleration (GB+Lazarian 16)

Syn Spectrum

Electron Spectrum

Spectral index distribution

TURBULENCE & SHOCKS IN LSS

Connections with galactic turbulence & CR transport ?

	Super-Alfvenic		Sub-Alfvenic			
	GC	СС	Galactic halo	HIM	WIM	Sun
<i>T</i> (K)	10 ⁸	3×10^{7}	2×10^{6}	10 ⁶	8×10^3	107
$c_{\rm s} ({\rm km \ s^{-1}})$	1650	900	130	90	8	360
$n_{th} (cm^{-3})$	10^{-3}	5×10^{-2}	10^{-3}	4×10^{-3}	0.1	10 ¹⁰
$l_{\rm mfp}$ (cm)	5×10^{22}	10 ²⁰	4×10^{19}	2×10^{18}	6×10^{12}	10 ⁸
L_0 (pc)	$1-5 \times 10^{5}$	$1-5 \times 10^{5}$	100	100	50	3×10^{-10}
$B(\mu G)$	1	10	5	2	5	10 ⁸
c_s^2/v_A^2	500	100	0.3	3.5	0.1	0.03
Damping	<i>Collisionless^a</i>	Collisionless?	Collisionless	Collisional	Collisional	Collisionless ^b

 ${}^{a}V_{\rm L} > 300 \,\rm km s^{-1}$. b Alfvénic turbulent-Mach number $M_{\rm A} \ge 0.3$ is assumed.

- Self-generated waves
- Large scale turbulence

TAKE HOME

□ GALAXY CLUSTERS ARE ENVIRONMENTS WHERE THE FERMI II OPERATES IN NEW REGIMES AND BECOMES VISIBLE .

□ TURBULENT REACCELERATION IS THE GOLD STANARD FOR RADIO HALOS.

THE NEW GENERATION OF RADIO TELESCOPES (es LOFAR) ALLOWS DETECTING STRUCTURES BEYOND GALAXY CLUSTERS.

□ FERMI II ARE LIKELY THE KEY MECHANISMS ALSO ON THESE SCALES.

THE SUPER-ALFVENIC NATURE OF ICM TURBULENCE HAS A KEY ROLE IN THE DIFFUSION/TRANSPORT OF CRs

OUR UNDERSTANDING OF TURBULENT ACCELERATION AND TRANSPORT IN THE ICM MAY HELP UNDERSTANDING RFFECTS OF LARGE SCALE TURBULENCE IN THE ISM/GAL.

PHYSICS OF SELF-GENERATED TURBULENCE TRADITIONALLY STUDIED BY ISM/GAL COMMUNITY MAY HELP IMPROVING UNDERSTANDING OF CR DIFFUSION IN THE ICM.

Cosmological Shocks and CRs in galaxy cluster (Blasi +01, Miniati +01, Ryu +03, Pfrommer +06,08, Skillman +08,12, Vazza, GB +09,11, ...)

Effects of effective collisionality

(GB+ in prep)

High-z radio halos (z>0.6)

uGMRT 650 MHz

□ Radio halos **discovered by LOFAR** + deep follow up at higher frequencies \Box ~Half of the radio halos have very steep spectrum (USS), $\alpha > 1.5$ Agreement with turbulent models -

Turbulent acceleration & B in LSS ??

(Brunetti+Vazza 2020, PRL..)

EXPECTATIONS & FIRST OBSERVATIONAL TESTS

(Brunetti+Vazza 20, PRL..)

Turbo reacceleration models predict : • Steep spectrum emission, a >1.3-1.4

• Volume filling emission (increasing at lower frequencies)

ABELL 2255

Botteon, vanW, GB, et al 23+

X-rays RADIO

Emission on gigantic scale Mix of components :

- Shock-like surfaces
- Volume filling (turb?) emission

Evidence that B is amplified (in addition to compression) and electrons are accelerated on very large scales.

First constraints on acceleration/amplification on LS

Non-thermal components are not negligible

Origin of LS Magnetic Fields

0.4

Origin of LS Magnetic Fields

Shear flows and turbulent/kinetic dynamos amplify the magnetic field in the clusters internal regions. The amplification process increases B energy by 2+ orders of magnitude (with respect to matter compression).

Where are CRp?

Reasons

- > Acceleration efficiency ?
- > Dynamics/escape of CRs ??
- CR spectrum ??

Gamma and radio observations independently suggest that non-thermal components are NOT dynamically important (% level) ... at least in the central Mpc-scale regions

Reacceleration of CRp & secondaries

Non detection by Fermi-LAT assuming FaradayRM. Future detections in the case of weaker B or with eASTROGAM. IF f >>1 no detections !

Constraints from gamma-rays

Xi+ 2018, Adam+ 21, Baghmanyan+ 22

"astro-plasma" of ICM (complications!)

mfp (Coulomb coll) : 1-100 kpc

$$l_{Coul} = \frac{m_e^2 v^4}{8\pi n Z^2 e^4 ln\Lambda} \approx 1.4 \times 10^4 (\frac{T}{K})^2 (\frac{n}{cm^{-3}})^{-1} cm$$

Larmor radius (TH) $r_{L,th} \approx 10^{10} B_{\mu} T_8^{1/2} \text{ cm} \sim 1000\text{--}10000 \text{ km}$

beta-plasma :
$$\beta = P_g/P_B = (2/\gamma)c_s^2/V_A^2$$
~100

Debye sphere:

$$\begin{split} \lambda_D &= (kT/(m_e\omega_{p,e}^2))^{1/2} ~~ \text{~~2-100 km} \\ N_D &= n_e\lambda_D^3 \sim 10^{13}T_{keV}^{3/2}n_e^{5/2} \sim 10^{14} \text{ particles} \end{split} \qquad R_c &= \nu_C/\omega_p \sim 10^{-15} \text{~~10}^{-15} \text{~~10} \text{~~10}^{-15} \text{~~10}^{-15} \text{~~$$

beta-plasma :
$$\beta = P_g/P_B = (2/\gamma)c_s^2/V_A^2$$
~100

Debye sphere:

$$\begin{split} \lambda_D &= (kT/(m_e \omega_{p,e}^2))^{1/2} ~~ \text{~~2-100 km} \\ N_D &= n_e \lambda_D^3 \sim 10^{13} T_{keV}^{3/2} n_e^{5/2} \text{~~10^{14} particles} \end{split} \qquad R_c &= \nu_C/\omega_p \text{~~10^{-15}} \end{split}$$

Debye sphere:

$$\begin{split} \lambda_D &= (kT/(m_e\omega_{p,e}^2))^{1/2} ~~\text{~~2-100 km} \\ N_D &= n_e\lambda_D^3 \sim 10^{13}T_{keV}^{3/2}n_e^{5/2} \sim 10^{14} \text{ particles} \end{split} \qquad R_c &= \nu_C/\omega_p \sim 10^{-15} \text{~~10}^{-15} \text{~~10}^{-15}$$

"astro-plasma" of ICM (complications!)
mfp (Coulomb coll) : 1-100 kpc

$$I_{Coul} = \frac{m_e^2 v^4}{8\pi n Z^2 e^4 ln \Lambda} \approx 1.4 \times 10^4 (\frac{T}{K})^2 (\frac{n}{em^{-3}})^{-1} cm$$
Larmor radius (TH) $r_{L,th} \approx 10^{10} B_{\mu} T_8^{1/2}$ cm ~ 1000-10000 km
unstable
(firehose,
mirror...)
beta-plasma : $\beta = P_g/P_B = (2/\gamma) c_s^2/V_A^2 \sim 100$
Debye sphere:
 $\lambda_D = (kT/(m_e \omega_{p,e}^2))^{1/2} \sim 2-100$ km
 $N_D = n_e \lambda_D^3 \sim 10^{13} T_{keV}^{3/2} n_e^{5/2} \sim 10^{14}$ particles
 $R_c = \nu_C/\omega_p \sim 10^{-15}$

"astro-plasma" of ICM (complications!)

Plasma effects & 'microphysics' (kinetic effects) are expected to affect CRs acceleration and transport! (but also transport,.. ICM viscosity... B amplification etc)

mfp (Coulomb coll) : 1-100 kpc

Larmor radius (TH) $r_{L,th} \approx 10^{10} B_{\mu} T_8^{1/2} \text{ cm} \sim 1000-10000 \text{ km}$

(firehose,

Plasma

Collective effects

 $R_c = \overline{\nu_C} / \omega_p \sim 10^{-15}$

beta-plasma : $\beta = P_g/P_B = (2/\gamma)c_s^2/V_A^2 \sim 100$

Debye sphere:

$$\begin{split} \lambda_D &= (kT/(m_e\omega_{p,e}^2))^{1/2} ~~ \text{~~} \text{~~} 2\text{-100 km} \\ N_D &= n_e\lambda_D^3 \sim 10^{13}T_{keV}^{3/2}n_e^{5/2} \text{~~} 10^{14} \text{ particles} \end{split}$$