Indirect measurements of Galactic Cosmic Rays: open problems and perspectives

G. Di Sciascio

INFN - Roma Tor Vergata, Italy
disciascio@roma2.infn.it

All-particle Energy Spectrum

All-particle Energy Spectrum

A closer look to the knee region

A closer look to the knee region

Open questions in Cosmic Ray Physics

Much of CR research in the past century has been devoted to answering a set of classical questions:
\checkmark Which classes of sources contribute to the CR flux in different energy ranges? How many types of sources provide a significant contribution to the overall CR flux?
\checkmark What is the elemental composition of CRs as a function of the energy?
\checkmark Is the knee due to a limit in SNR acceleration? Does it depend on the particle rigidity? How can we explain the second knee?
\checkmark Which are the relevant processes responsible for CR propagation/confinement in the Galaxy?
\checkmark Where is the transition between Galactic and EG-CRs? How can we explain the ankle?
\checkmark Which sources are capable of reaching the highest particle energies and how?

Cosmic Ray detection

Cosmic Ray detection

for satellite exp

According to the flux and the physics line different platforms and detection techniques can be adopted

Detector size limits the smallest measurable flux !

Direct measurements up to $\approx 100 \mathrm{TeV} / n$

The challenge of EAS detection

The ultimate aim of EAS detection is the identification of the primary $C R$ in terms of

Mass / Charge
Energy
Arrival direction

We are dealing with an INDIRECT measurement of Cosmic Rays

To infer the properties of the primary particle one needs to detect EAS as precisely as possible (with multi-component experiments)

The challenge of EAS detection

The ultimate aim of EAS detection is the identification of the primary $C R$ in terms of

Mass / Charge
Energy
Arrival direction

We are dealing with an INDIRECT measurement of Cosmic Rays

To infer the properties of the primary particle one needs to detect EAS as precisely as possible (with multi-component experiments)

Astrophysical interpretation limited by description of interactions in the atmosphere

Different detectors for different observables

Different detectors for different observables

1. Ground-based arrays: sample shower tail particles reaching ground
\rightarrow Tail Catcher Sampling Calorimeter (in HEP detector language)

Atmosphere: the absorber

Detector at ground: the device to measure a (poor) calorimetric signal
\rightarrow signal about direction and energy from the shower tail particles
\star large shower-to-shower fluctuations
\star large geometric acceptance and high duty cycle ($\approx 100 \%$)

Different detectors for different observables

1. Ground-based arrays: sample shower tail particles reaching ground
\rightarrow Tail Catcher Sampling Calorimeter
(in HEP detector language)
$\Delta T \quad F=10^{14} \mathrm{eV}$ PROTON
$\sim 10^{9}$ FLUORESCENCE PHOTONS
Atmosphere: the absorber
Detector at ground: the device to measure a (poor) calorimetric signal
\rightarrow signal about direction and energy from the shower tail particles

* large shower-to-shower fluctuations
\star large geometric acceptance and high duty cycle ($\approx 100 \%$)

2. Telescopes: observation of Cherenkov photons/nitrogen fluorescence allows the study of EAS longitudinal profile
\rightarrow Homogeneous Calorimeter
```
\star low duty cycle (\approx10-15%)
\(\star\) good energy resolution
```


Detection of showers with arrays

From an experimental point of view, the sampling of secondary particles at ground can be realized with two different approaches
(1) Particle Counting. A measurement is carried out with thin (<< 1 radiation length) counters providing a signal proportional to the number of charged particles (as an example, plastic scintillators or RPCs). The typical detection threshold is in the keV energy range.
(2) Calorimetry. A signal proportional to the total incident energy of electromagnetic particles is collected by a thick (many radiation lengths) detector. An example is a detector constituted by many radiation lengths of water to exploit the Cherenkov emission of secondary shower particles. The Cherenkov threshold for electrons in water is 0.8 MeV and the light yield ≈ 320 photons $/ \mathrm{cm}$ or ≈ 160 photons $/ \mathrm{MeV}$ emitted at 41°.

[^0]
Mass-sensitive EAS observables

Strictly speaking, no air shower experiment measures the primary composition of CRs.

We have different mass-sensitive EAS observables
\uparrow Particle numbers at ground

- electrons
- muons (also underground)
- hadrons
- the electron-to-muon number ratio
- the arrival time distribution
- the curvature of the shower front
$E>10^{13} \mathrm{eV}$
- the slope of the lateral distribution
- shower core density
- underground muons
- muon fluctuations
\checkmark Cherenkov light
$10^{14}<E<10^{16} \mathrm{eV}$
\downarrow Fluorescence light
$E>10^{17} \mathrm{eV}$
\uparrow Radio signals
$E>10^{17} \mathrm{eV}$

Mass Resolution in EAS measurements

A resolution of one unit in lnA in principle allows to reconstruct 4 (or 5 ?) different mass groups: $\mathrm{p}, \mathrm{He}, \mathrm{CNO}, \mathrm{MgSi}$ (?) and Fe .

According to the Heitler-Matthews toy model we can evaluate the mass resolution in EAS measurements (Horandel 2007, Di Sciascio 2022)

- Electron-muon ratio
$\lg \left(\frac{N_{e}}{N_{\mu}}\right)=C-0.065 \cdot \ln A$
Typical uncertainty
$\frac{\Delta\left(N_{e} / N_{\mu}\right)}{N_{e} / N_{\mu}} \sim 0.15\left[\frac{\Delta A}{A}\right] \rightarrow$
$\Delta\left(\frac{N_{e}}{N_{\mu}}\right) \approx 15 \%-20 \%$
- Depth of shower maximum

$$
X_{\max }^{A}=X_{\max }^{p}-X_{0} \cdot \ln A
$$

Radiation length $X_{0} \sim 37 \mathrm{~g} / \mathrm{cm}^{2}$

Typical uncertainty

$$
\Delta X_{\max } \simeq 20 \mathrm{~g} / \mathrm{cm}^{2}
$$

Expected mass resolution

4 to 5 mass groups
p, $\mathrm{He}, \mathrm{CNO},(\mathrm{MgSi}), \mathrm{Fe}$

Expected mass resolution
$\Delta \ln A \approx 1$

A description of the $C R$ energy spectrum

The absolute flux K_{0} and the spectral index α_{1} quantify the power law. The flux above the cut-off energy E_{b} is modeled by a second and steeper power law. The parameters α_{2}, the slope beyond the knee, and $w>0$, the smoothness of the transition from the first to the second power law, characterize the change in the spectrum at the cut-off energy. A value $w=0$ corresponds to a steep transition that soften with increasing values?

All-particle energy spectrum: the knee region

The most detailed observation of the knee region comes from ARGO-YBJ and Tibet AS γ

Fits to the all-particle spectra in the knee region

Table 1: Fits to the all-particle CR spectra in the energy range $8 \cdot 10^{4}$ to $2 \cdot 10^{9} \mathrm{GeV}$.
(a) Parameters for the first Knee.

Experiment	$E_{b 1}(\mathrm{PeV})$	α_{1}	α_{2}	w_{1}
TALE	4.26 ± 1.65	2.76 ± 0.18	3.11 ± 0.07	0.07 ± 0.18
IceTop	3.30 ± 1.23	2.48 ± 0.08	3.12 ± 0.12	0.30 ± 0.46
Tunka-133	4.18 ± 0.83	2.76 ± 0.09	3.20 ± 0.04	0.15 ± 0.16
ARGO-YBJ/Tibet AS γ	3.72 ± 0.03	2.66 ± 0.01	3.13 ± 0.01	0.11 ± 0.01
Kascade-Grande	2.10 ± 0.87	2.47 ± 0.04	3.16 ± 0.14	0.60 ± 0.51

(b) Parameters for the ankle feature.

Experiment	$E_{b 2}(\mathrm{PeV})$	α_{2}	α_{3}	w_{2}
TALE	16.61 ± 8.36	3.11 ± 0.05	2.93 ± 0.05	0.07 ± 0.05
IceTop	18.66 ± 6.65	3.12 ± 0.12	2.92 ± 0.05	0.05 ± 0.05
Tunka-133	18.70 ± 3.88	3.20 ± 0.04	2.96 ± 0.05	0.17 ± 0.45
ARGO-YBJ/Tibet AS γ	43.8 ± 4.81	3.13 ± 0.01	2.86 ± 0.05	0.01 ± 0.01
Kascade-Grande	18.01 ± 17.4	3.16 ± 0.14	2.83 ± 0.45	0.66 ± 1.74

(c) Parameters for the second Knee.

Experiment	$E_{b 3}(\mathrm{PeV})$	α_{3}	α_{4}	w_{3}
TALE	104.5 ± 40.0	2.93 ± 0.05	3.18 ± 0.06	0.02 ± 0.02
IceTop	168.4 ± 17.4	2.92 ± 0.05	3.50 ± 0.40	0.25 ± 0.16
Tunka-133	238.2 ± 56.8	2.96 ± 0.05	3.34 ± 0.19	0.05 ± 0.50
Kascade-Grande	274.5 ± 122	2.83 ± 0.45	3.20 ± 0.13	2.47 ± 0.97

The knee region

The origin of the 'knee'

In 1961 B. Peters postulated a rigidity cutoff model.

$$
E_{\max } \approx Z e \cdot L \cdot B
$$

$$
\rightarrow E_{\text {total }}(\text { knee }) \sim \mathbb{Z} \times R(\text { knee })
$$

- Not only does the spectrum become steeper due to such a cutoff but also heavier
- $<\mathrm{A}>$ should begin to decrease again for $\mathrm{E}>30 \times \mathrm{E}_{\text {knee }} \approx 100 \mathrm{PeV} \rightarrow 2$ nd knee??

A Rigidity Cutoff model?

The standard model of Galactic CRs

The standard model of Galactic CRs

The standard model of Galactic CRs

Determining elemental composition in the knee energy region is crucial to understand where galactic CR spectrum ends.

Galactic CRs: mainstream interpretation

- All-particle knee at about 4 PeV caused by cut-off for light elements (p, He)
- CRs below $10^{17} \mathrm{eV}$ are predominantly Galactic
- Standard paradigm: Galactic CRs accelerated in SN shocks via 1^{0} order Fermi mechanism
- Somehow released into the ISM, CRs are diffusively confined within a magnetized Galactic halo
- CRs reside from some time before escaping the Galaxy

- Galactic CRs are scrambled by galactic magnetic field over very long time
\rightarrow arrival direction mostly isotropic
The knee
\checkmark Acceleration limits in galactic sources (Hillas, 2005)
\checkmark Escape increasing of particle from the Galaxy (Giacinti, 2014, 2015)

Galactic CRs: mainstream interpretation

- All-particle knee at about 4 PeV caused by cut-off for light elements (p, He)
- CRs below $10^{17} \mathrm{eV}$ are predominantly Galactic
- Standard paradigm: Galactic CRs accelerated in SN shocks via 1^{0} order Fermi mechanism
- Somehow released into the ISM, CRs are diffusively confined within a magnetized Galactic halo
- CRs reside from some time before escaping the Galaxy

- Galactic CRs are scrambled by galactic magnetic field over very long time
\rightarrow arrival direction mostly isotropic
The knee
\checkmark Acceleration limits in galactic sources (Hillas, 2005)
\checkmark Escape increasing of particle from the Galaxy (Giacinti, 2014, 2015)

Galactic CRs: mainstream interpretation

- All-particle knee at about 4 PeV caused by cut-off for light elements (p, He)
- CRs below $10^{17} \mathrm{eV}$ are predominantly Galactic
- Standard paradigm: Galactic CRs accelerated in SN shocks via 1^{0} order Fermi mechanism
- Somehow released into the ISM, CRs are diffusively confined within a magnetized Galactic halo
- CRs reside from some time before escaping the Galaxy

- Galactic CRs are scrambled by galactic magnetic field over very long time
\rightarrow arrival direction mostly isotropic
The knee
\checkmark Acceleration limits in galactic sources (Hillas, 2005)
\checkmark Escape increasing of particle from the Galaxy (Giacinti, 2014, 2015)
- 2nd galactic component at $\sim 10^{17} \mathrm{eV}$?
- Transition to extragalactic CRs occurs somewhere between 10^{17} and $10^{19} \mathrm{eV}$

KASCADE results

\checkmark Knee caused by cut-off for light elements
\checkmark Knee energy increases with primary mass
\checkmark Fe knee not observed
\checkmark strong indication for a rigidity-dependent knee

Fluxes depend on the high energy hadronic interaction models

- QGSjet \rightarrow He more abundant element at the knee
- SIBYLL $2.1 \rightarrow$ c more abundant element at the knee

G. Di Sciascio - INFN Roma Tor Vergata

CRA - Chicago, May 16, 2023

Astroparticle Physics 24 (2005) 1 Astroparticle Physics 31 (2009) 86

Kascade-Grande: Iron knee?

$$
\begin{aligned}
& \gamma_{1}=-2.76 \pm 0.02 \\
& \gamma_{2}=-3.24 \pm 0.05
\end{aligned}
$$

- spectrum of the electron poor sample: $k>\left(k_{c}+k_{s i}\right) / 2 \rightarrow$ steepening observed with 3.5σ significance
- Spectrum of electron rich events
\rightarrow can be described by a single power law
\rightarrow hints of a hardening above $10^{17} \mathrm{eV}$
- relative abundances different for different high-energy hadronic interaction models

IceTop + IceCube

M. G. AARTSEN et al.

PHYS. REV. D 100, 082002 (2019)

The elemental spectra results agree well with the recent H3a and H4a phenomenological models in which heavier elements retain a harder spectral index to higher energies.

TUNKA-133: Elemental Composition

\checkmark Knee: P , He
\checkmark Heavy knee at $\sim 7 \cdot 10^{16} \mathrm{eV}$, light component growing above $\sim 4-5 \cdot 10^{16} \mathrm{eV}$
\checkmark Mean mass getting heavier up to $\sim 10^{17} \mathrm{ev}$, then lighter again

Is that all?

NO!

The ARGO-YBJ ($p+$ He) knee

ARGO-YB): the only experiment with ($P+H e$) data in the range TeV - 5 PeV
\rightarrow clear observation of a knee both with array and a wide Fov cherenkov Telescope

$p+H e$: indirect measurements

\checkmark ARGO-YBI and TIBET AS γ : single power law E<500 TeV
\checkmark HAWC: deviation from single power law?
\checkmark ARGO-YBJ and TIBET AS γ : light knee below the PeV
\checkmark KASCADE: light knee at about 4 PeV

HAWC vs ARGO-YBJ/TIBET AS

\checkmark HAWC: deviation from single power-law
\checkmark ARGO-YBJ and TIBET AS γ : single power-law

HAWC vs ARGO-YBJ/TIBET AS

The light knee: ARGO-YBJ and Tibet Array

same altitude but different detectors, layouts, observables (shower core), reconstruction. In both, NO muons and small dependence on interaction models

High altitude measurements

Shower sampling before the max?

ARGO-YBJ
Tibet AS γ
HAWC
LHAASO $4300 \mathrm{masl}=606 \mathrm{~g} / \mathrm{cm}^{2}$

shower maximum for protons has large fluctuations

High altitude measurements

Shower sampling before the max?

ARGO-YBJ
Tibet AS γ
HAWC
LHAASO $4300 \mathrm{masl}=606 \mathrm{~g} / \mathrm{cm}^{2}$

shower maximum for protons has large fluctuations

ARGO-YBJ distributions for simulated and observed events
$\approx 700 \mathrm{~g} / \mathrm{cm}^{2}$

CRA - Chicago, May 16, 2023

Composition at the knee: BASJE - MAS

The measured $\langle\ln A\rangle$ increases with energy over the energy range of $10^{14.5}-10^{16} \mathrm{eV}$. This is consistent with our former Cerenkov light observations and the measurements by some other groups. The observed $\langle\ln A\rangle$ is consistent with the expected features of a model in which the energy spectrum of each component is steepened at a fixed rigidity of $10^{14.3} \mathrm{~V}$.

Finally, we conclude that the actual model suggests that the dominant component above $10^{15} \mathrm{eV}$ is heavy and that the $\langle\ln A\rangle$ increases with the energy to about 3.5 at $10^{16} \mathrm{eV}$.

Chacaltaya, 5200 m asl

Composition at the knee: CASA-MIA

The spectra of the heavy and light components ap-
mear similar below 500 TeV , at which point the lighter
mponent's spectral index steepens. The heavier
mponent shows no such "knce" at that energy.
The spectra of the heavy and light components ap-
pear similar below 500 TeV , at which point the lighter
component's spectral index steepens. The heavier
component shows no such "knce" at that energy.
The spectra of the heavy and light components ap-
pear similar below 500 TeV , at which point the lighter
component's spectral index steepens. The heavier
component shows no such "knce" at that energy.
The spectra of the heavy and light components ap-
pear similar below 500 TeV , at which point the lighter
component's spectral index steepens. The heavier
component shows no such "knce" at that energy.
Astroparticle Physics 12 (1999) 1-17

$$
E_{0} \approx A+B \cdot\left(N_{e}+K \cdot N_{\mu}\right)
$$

The energy reconstruction is compositionally independent!

NUCLEON

NUCLEON: A new universal cosmic-ray knee near the magnetic rigidity 10 TV . universality means the same position of the knee in the magnetic rigidity scale for all groups of nuclei. This new cosmic ray "knee" is probably connected with the limit of acceleration of cosmic rays by some generic or nearby source of cosmic rays.

A compilation of the data on proton spectrum before NUCLEON

Fig. 5. The magnetic rigidities spectra fitted by a power function after the "knee".

DAMPE: p+He between 46 GeV and 316 TeV

Deviation from a single power-law

Hardening at ~ 600 GeV with a softening at ~ 29 TeV with a significance of 6.6σ Possible second hardening at $\sim 150 \mathrm{TeV}$

arXiv:2304.00137

p+He: DAMPE vs ARGO-YBJ and HAWC

conflicting results in the 10-100 TeV range

p+He: DAMPE and NUCLEON

$p+H e$: direct vs indirect measurements

Deviation from a single power-law in the 10-100 TeV range?

CALET 2023

Deviation from a single power-law at 8σ level

Knees and atmospheric neutrinos

The flux of atmospheric neutrinos is sensitive to the spectrum of parent cosmic rays.
"A clear distinction between an ARGO-like and a KASCADE-like knee seems possible at energies $\geq 100 \mathrm{TeV}$ if the atmospheric neutrinos could be properly tagged."

"Unfortunately this is also the energy region where the total neutrino flux detected by IceCube departs from the existing predictions for atmospheric neutrinos. This is usually interpreted as the onset of a neutrino component having an astrophysical origin. So far, the sources of such neutrinos remain unknown."
"Current experimental uncertainties do not allow to draw firm conclusions."

Knee region: quite confusing situation

Each experiment can find compatible measurements!

Why conflicting results?

- Experiments located at different altitudes: sea level $\boldsymbol{\rightarrow} 5200 \mathrm{~m}$ asl
- Different detectors and layout
- Different coverage \rightarrow different sampling capability/fluctuations
- Different energy threshold \rightarrow calibration absolute energy scale
- Different role of fluctuations which limit mass resolution
- Different energy resolution \rightarrow better close to the shower max
- Different observables to infere the elemental composition
- Different reconstruction procedures
- ...

Electron \mathcal{E} Muon counting

The first method to investigate the composition of CRs dates back in 1962 when J. Linsley, L. Scarsi and B. Rossi working at MIT Volcano Ranch Station suggested for the first time that muons are a mass-sensitive observable after the observation of a muon/electron correlation: $N_{\mu} \sim A^{1-\alpha} \cdot\left(N_{e}\right)^{\alpha}$

Both electron and muon numbers scatter considerably.

- Problem: N_{e} and N_{μ} depend on Energy and Mass and atmospheric depth!

$$
N\left(E_{o}, A\right)=\alpha(A) \cdot E^{\beta(A)}
$$

Want to know $E \rightarrow$ need to know A !
Want to know $A \rightarrow$ need to know E !

Primary energy and elemental composition: an entangled problem!!!

Exact relations to be taken from EAS simulation assuming a given elemental composition and an interaction model

EAS analysis of CR data

\rightarrowDisentanglement of the threefold problem: \mathbf{E}, \mathbf{A}, interaction

Intrinsic ambiguity

There is an intrinsic ambiguity in the interpretation of $C R$ data.
The ambiguity is governed by our poor understanding of two basic elements:
(a) the shower development
(b) the composition of the primary CR spectrum, i.e., the mass number A of the primary particles

Crucial for shower development

1. the behaviour of the inelasticity K, the fraction of the primary energy converted into secondaries
2. the inelastic cross sections

Fluctuations in N_{e}, N_{μ} at two depths

The intrinsic fluctuations of shower development and the additional scattering introduced by the limited sampling of shower particles at the observation level are typically larger than the mean differences between showers initiated by different types of primaries.

Shower-to-shower fluctuations limit the mass resolution of detector located deep in the atmosphere!

Both electron and muon numbers scatter considerably.

High altitude crucial to improve mass and energy resolution for the knee energy region

What's next? LHAASO

flux sensitivity $\nu \mathrm{F}_{\nu}$: erg $/ \mathrm{cm}^{2} \mathrm{~s}$

LHAASO opened the PeV gamma-sky to observations for the first time!

LHAASO: a multi-component experiment

To fill the gap in the CR detection between the low and the very high energy ranges with a single experiment.

Multi-component strategy to measure light and heavy knees

- Water Cherenkov Detector Array
- Scintillator Array
- Muon Detector Array
- 18 Cherenkov/Fluorescence Telescopes
- Neutron (Hadron) Detectors

Cosmic Ray Physics with LHAASO

COSMIC RAY MASS INDEPENDENT ENERGY RECONSTRUCTION ... PHYS. REV. D 107, 043036 (2023)

Combined event observed with KM2A and WFCTA

Some conclusions from data

1. Knee energy region

\checkmark all experiments observe an all-particle knee at $\sim 4 \cdot 10^{15} \mathrm{eV}$
\checkmark composition at knee controversial: light component knee ~ 500 TeV (Tibet Array), ~ 800 TeV (ARGO-YB) a factor $\sim 4-5$ lower than Kascade
\checkmark Possible deviation from a single power-law in the 10-100 TeV range reported by HAWC and direct measurements

$\sqrt{10^{-3}-10^{-4}}$ LSA amplitudes found at Tev energíes.
$\checkmark 10^{-4} \mathrm{MSA}$ amplítudes at TeV energies
\checkmark Dramatic phase-flip around $\approx 100 \mathrm{TeV}$.

Some conclusions from data

2. Transition region: $10^{16}-10^{18} \mathrm{eV}$

\checkmark good agreement of all experiments within systematics
\checkmark good superposition with UHE arrays
\checkmark concave region above $2 \cdot 1016 \mathrm{eV}$
\checkmark steepening $\sim 1017 \mathrm{eV}$
\checkmark 2nd galactic component at $\sim 10^{17} \mathrm{eV}$?

between 10^{16} and $10^{18} \mathrm{eV}$ dipole smaller than 10^{-2}

Conclusions

The position of the proton knee is of the crucial importance for the description of the Galactic CRs component(s) and to identify the transition from Galactic to extragalactic CRs.

Data are still conflicting: different measurements suggest rather different scenarios

- A proton knee at about 800 TeV (ARGO-YBJ, Tibet Array, BASJE-MAS, CASA-MIA)
- A proton knee at few PeV (KASCADE, KASCADE-Grande, TUNKA, IceTop)
- Deviation from a single power-law in the $10-100 \mathrm{TeV}$ range?

The LHAASO experiment will investigate a wide energy range ($10^{13} \rightarrow 10^{17} \mathrm{eV}$) studying CR physics at extreme altitude with a multi-component strategy.
The energy resolution for the light component was better than 10% with an energy bias of less than 1% at $\approx 1 \mathrm{PeV}$.

The recent detections by LHAASO directly demonstrate the presence of electron and proton PeVatrons in the Milky Way
Are the galactic proton PeVatrons linked to SNRs or YMCs or Sgr A* or all of of them?

- observations with LHAASO, eRosita, CTA and SWGO will tell us

Different detectors, altitudes and range

Experiment	$\mathrm{g} / \mathrm{cm}^{2}$	Detector	$\Delta \mathrm{E}$ (eV)	e.m. Sensitive Area $\left(\mathrm{m}^{2}\right)$	Instrumented Area $\left(\mathrm{m}^{2}\right)$	Coverage
ARGO-YBJ	606	RPC/hybrid	$3 \cdot 10^{11}-10^{16}$	6700	11,000	
BASJE-MAS	550	scint./muon	$6 \cdot 10^{12}-3.5 \cdot 10^{16}$		0.93	
TIBET AS γ	606	scint./burst det.	$5 \cdot 10^{13}-10^{17}$	380	10^{4}	
CASA-MIA	860	scint./muon	$10^{14}-3.5 \cdot 10^{16}$	1.6×10^{3}	3.7×10^{4}	10^{-2}
KASCADE	1020	scint./mu/had	$2-90 \cdot 10^{15}$	5×10^{2}	4×10^{5}	7×10^{-3}
KASCADE-Grande	1020	scint./mu/had	$10^{16}-10^{18}$	370	5×10^{4}	1.2×10^{-2}
Tunka	900	open Cher. det.	$3 \cdot 10^{15}-3 \cdot 10^{18}$	-	7×10^{-4}	
IceTop	680	ice Cher. det.	$10^{16}-10^{18}$	4.2×10^{2}	10^{6}	10^{6}
LHAASO	600	Water C scintill/muon/hadron Wide FoV Cher. Tel.	$10^{12}-10^{17}$	5.2×10^{3}	1.3×10^{6}	4×10^{-4}

		μ Sensitive Area $\left(\mathrm{m}^{2}\right)$	Instrumented Area $\left(\mathrm{m}^{2}\right)$	Coverage
LHAASO	4410	4.2×10^{4}	10^{6}	4.4×10^{-2}
TIBET AS γ	4300	4.5×10^{3}	3.7×10^{4}	1.2×10^{-1}
KASCADE	110	6×10^{2}	4×10^{4}	1.5×10^{-2}
CASA-MIA	1450	2.5×10^{3}	2.3×10^{5}	1.1×10^{-2}

\downarrow LHAASO Muon detector area: $4.2 \times 10^{4} \mathrm{~m}^{2}+8 \times 10^{4} \mathrm{~m}^{2}(\mathrm{WCDA}) \approx 10^{5} \mathrm{~m}^{2}!!!$

All-particle energy spectrum

[^0]: "Detecting gamma-rays with moderate resolution and large field of view: Particle detector arrays and water Cherenkov technique"
 Michael A. DuVernois, Giuseppe Di Sciascio
 Chapter for "Handbook of X-ray and Gamma-ray Astrophysics" (Eds. C. Bambi and A. Santangelo, Springer Singapore) arXiv:2211.04932

