IceCube-Gen2 From Discovery to Astronomy

IceCube Bootcamp June 2022

Albrecht Karle Univ. Wisconsin-Madison

10 yrs of IceCube - a first view on the PeV Universe

Some highlights:

2013: Discovery of cosmic PeV neutrino flux2018: Evidence for Blazars as neutrino sources2019: Observation of first tau neutrino

Scientific objectives: building on 10 yrs of IceCube

Resolving the highenergy sky from TeV to EeV energies

What are the sources of IceCube's high energy neutrinos?

Understanding cosmic particle acceleration through multimessenger observation

Observable volume with IceCube-Gen2

Expand energy range to beyond 10¹⁸ eV with sensitivity improved by two orders of magnitude

> Uniform sensitivity over large energy range over more than 6 orders of mag energies.

Understanding cosmic particle acceleration through multimessenger observation

Revealing the sources and propagation of the highest energy particles in the universe

Probing source populations and composition of highest energy cosmic rays

Abby's talk on radio detection.

Neutrino production mechanisms with cosmic rays: Accelerate protons and have them interact. Result: Pions and other stuff $pp \rightarrow NN + pions$, $p\gamma \rightarrow p\pi^0, n\pi^+$

Probing fundamental physics with high-energy neutrinos

Probing neutrino oscillations over cosmic baselines

 $pp \rightarrow NN + pions, \quad p\gamma \rightarrow p\pi^0, n\pi^+$

$$\pi^{\scriptscriptstyle +}
ightarrow \mu^{\scriptscriptstyle +} +
u_{\mu} \ \mu^{\scriptscriptstyle +}
ightarrow e^{\scriptscriptstyle +} +
u_e + \overline{
u}_{\mu}$$

Requirements for IceCube-Gen2

Enhanced sensitivity to neutrino flavors and the ability for flavor identification

Measuring energy dependent neutrino flavor ratios (→BSM physics and nature of source)

Bert: Energy 1 PeV

How well could we reconstruct this event with fewer strings?

Analyzed event using only subsets of 20 IceCube strings spaced at 250m.

Result: Vertex reconstruction:~ 12m Angular resolution: ~30° Energy resolution: 10%

Same result for Ernie, the other PeV event.

→ Don't need 100,000 photoelectrons to measure energy to 10%.

Dr. Strangepork

Deposited energy: 71 TeV 7.1 x 10^13 eV

The Super-Kamiokande Neutrino detector, 40 ktons of water Energy threshold: a few MeV

Water Cherenkov detectors: PMT coverage vs energy threshold

New evidence at higher energy \rightarrow science requirement: focus on higher energy We can reduce the PMT coverage (string density) by increasing the energy threshold.

Extending the region of ice to instrument with DOMs

- Bedrock estimated depth 2750m – 2850m
- 150 m to 200 m of very clear and usable ice below IceCube (need safety distance from bedrock)
- 100 m of good ice above

→Can make instrumented region 250 to 300m longer.

IceCube-Gen2

A Vision for the Future of Neutrino Astronomy in Antarctica (arXiv:1412.5106)

Artist's conception 120 strings at 240 m spacing

The next-generation IceCube: from discovery to astronomy

Optical sensors

IceCube DOM

Diameter 33 cm 10 inch PMT

IceCube Upgrade (under construction) primary sensors

Directional information 24 x 3 inch PMT Diameter 36 cm 2 x 8 inch PMT Smaller diameter 30 cm

Gen2 sensor conceptual design

16 x 4 inch PMT Smaller diameter 30 cm

Gen2 optical module: LOM

- LOM Design goals:
 - Large photon effective area (QE, CE)
 - Pixels
 - Good PMT specs

Support structure examples and base: progress with LOM 16 and LOM 18

IceCube-Gen2 — scope

IceCube and Gen2 on different scales reflecting different energies

10 PeV

10 TeV

1 TeV

few GeV

IceCube-Gen2

Ideally, uniform spacing of sensors. Drilling holes is much effort, therefore: strings. Spacing: Strings: 125 m -> 240m

Sensors: $17 \text{ m} \rightarrow 17 \text{m}$, but factor 3 more sensitive.

How can that work?

Architecture

GEN2

 Power and communications architecture: simplified requirements for cable hardware.

24

DAQ and cables

Field hub similar to scintillator field hub: elevated, heated (6 DOMs/pair)

3

Gen2 Surface Array

Baseline design extends the planned IceTop enhancement to footprint of the IceCube-Gen2 optical array

IceCube-Gen2 — scope

•

The Gen2 radio array - options considered

Area: 500 km² 300 stations 1000 km³ of ice volume

Mobile drill/deployment towers

Hose reel

4

Drilling EHWD-Gen1

EHWD heating plant: stationary -> Gen2: mobile

Current Status:

Received very good recommendations by Astro2020 decadal review. (An assessment by done by National Academy every 10 years.)

IceCube Upgrade, 7 strings, under way, deploy in 2025/26.

Technical development is well under way.

Preparing a Technical Design Document to present to NSF.

IceCube Overview

- 10 megaton volume
- string spacing : $125m \rightarrow 35m \rightarrow 22m$
- module spacing: $17m \rightarrow 7m \rightarrow 3m$

Low energy neutrinos in the Upgrade

... and the improvements implemented between the 3 and 9.3-year DeepCore analyses have not been applied !

THE The **High-energy** ceCube of the Next Generation

-> IceCube-Gen2

-> IceCube-Gen2

Project Objectives (Unchanged Since 2016)

- 1. Neutrino Properties
- 2. Recalibration and Reanalysis of IceCube Data
- 3. IceCube-Gen2 Research and Development

