IceCube event reconstruction

Tianlu Yuan
IceCube Bootcamp
June 15, 2022

IceCube

Detection principals

Neutrino interacts via weak force with targets in ice

- At IceCube energies, primarily deep-inelastic scattering (DIS) off nucleons

Nucleon breaks apart; outgoing particles may be charged Charged particles emit Cherenkov radiation detectable by PMTs

Rev. Mod. Phys. 84, 1307

Cherenkov radiation

Occurs when a charged particle travels faster than light-in-medium

Constructive interference of EM-field to form a plane wave

Fig. 14.14 Cherenkov radiation. Spherical wavelets of fields of a particle traveling less than, and greater than, the velocity of light in the medium. For $v>c$, an electromagnetic "shock" wave appears, moving in the direction given by the Cherenkov
angle θ_{c}.

Cherenkov radiation in water

Tracks vs cascades

Tracks can travel large distance ~ first photons on Cherenkov cone Cascades travel relatively short distance \sim diffuse photons w. spherical front

What do neutrinos look like in IceCube?

muons: long paths in the detector \rightarrow track

What do neutrinos look like in IceCube?

electrons/hadrons: shower of light \rightarrow cascade

What IceCube actually sees (high-energy)

CC muon neutrino

$v_{\mu}+N \rightarrow \mu+X$
track (data)
angular resolution $\sim 0.5^{\circ}$ energy resolution ~ x2

NC or CC electron neutrino

$$
\begin{gathered}
v_{e}+N \rightarrow e+X \\
v_{x}+N \rightarrow v_{x}+X
\end{gathered}
$$

shower (data)
angular resolution ~ 10° energy resolution ~ 15%

CC tau neutrino

$\nu_{\tau}+N \rightarrow \tau+X$
"double-bang" (simulation)
~2 expected in 6 years

Event reconstruction

Emitted

Detected

Asymmetry in photon emission helps with directional reconstruction

$v_{e}+N \rightarrow e+X$
$v_{l}+N \rightarrow v_{l}+X$

Physics parameters and IceCube coordinates

$$
\boldsymbol{\Theta}=(x, y, z, \theta, \phi, E, t)
$$

Detector coordinate system centered in middle of detector
$(\theta, \phi)=$ (zenith, azimuth) corresponds to arrival direction
Usually, (θ, ϕ, E) are the physics parameters we're most interested in

Approaches for reconstruction

Tracks

- Use first-hit times for directional reconstruction (SANTA, SplineReco)

Arrival time pdfs

PMT jitter (Transit time spread) due to spread in initial energies/momenta of photoelectrons

Additional effects due to:

- noise
- additional cascades along track
- scattering

Original analytic parameterization

- "Pandel function" (gamma dist.) $p\left(t_{\mathrm{res}}\right) \equiv \frac{1}{N(d)} \frac{\tau^{-(d / \lambda)} \cdot t_{\mathrm{res}}^{(d / \lambda-1)}}{\Gamma(d / \lambda)} \cdot e^{-\left(t_{\mathrm{res}} \cdot\left(\frac{1}{\tau}+\frac{c_{\mathrm{medium}}}{\lambda_{a}}\right)+\frac{d}{\lambda_{a}}\right)}$ $N(d)=e^{-d / \lambda_{a}} \cdot\left(1+\frac{\tau \cdot c_{\text {madium }}}{\lambda_{a}}\right)^{-d / \lambda}$,
- Now based on splines

MPE Pandel likelihood

Pandel function cannot cope with negative time residuals so need to convolute with Gaussian

- https://user-web.icecube.wisc.edu/~boersma/PandelUpdates/MPEplots/

Plain MPE (no jitter)

Gauss convoluted (fast-approx.)

SplineReco Resolutions

Improvements were made by moving to (photo)spline tables based on simulation (c.f. K. Schatto thesis)
Fast 1D Gaussian convolution using IIR approximation

Approaches for reconstruction

Tracks

- Use first-hit times for directional reconstruction (SANTA, SplineReco)
- Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
- Millipede works for high-energy tracks by breaking it up into multiple cascades along the track due to muon stochastic energy losses

Example reco for a data event

Two approaches to full-waveform reconstruction

Tabulated photon yields

- Pros: Fast runtime; gradients
- Cons: Limited icemodels
Direct photon
propagation
- Pros: Any ice-model can be used
- Cons: Statistical errors from both data and MC; slow

IC collaboration, 1311.4767
D. Chirkin, arXiv:1304.0735

Minimization approaches

Given a likelihood $\mathcal{L}\left(\mathbf{\Theta} \mid \mathrm{X}_{\text {Data }}\right)$ as a function of $\Theta=(x, y, z, \theta, \phi, E, t)$, want to find $\mathbf{\Theta}_{\mathbf{0}}$ that minimizes the negative likelihood
> Millipede uses photon tables which allows for iterative gradient descent
> DirectFit reruns photon simulation which is more computationally intensive

Low-energy reco: RetroReco and DirectReco

RetroReco: emit photons from DOM and track \rightarrow then build retro tables

DirectReco: like DirectFit but for lower energies

Approaches for reconstruction

Tracks

- Use first-hit times for directional reconstruction (SANTA, SplineReco)
- Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
- Millipede works for high-energy tracks by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (EventGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

FreeDOM

Likelihood-free inference using NN

Train a binary classifier that can be converted back into a likelihood

- We replace $\frac{\mathcal{c}(\boldsymbol{\theta} \mid \boldsymbol{x})}{p(\boldsymbol{x})}$ with the output of our neural network, $\boldsymbol{r}(\boldsymbol{x}, \boldsymbol{\theta})$
- \boldsymbol{r} is a ratio estimator; approximates the likelihood-to-evidence ratio
- $\boldsymbol{r}(\boldsymbol{x}, \boldsymbol{\theta})$ can be used anywhere you'd typically use a likelihood function
- Evaluating $\boldsymbol{r}(\boldsymbol{x}, \boldsymbol{\theta})$ is very fast (tens of microseconds)

parameters not being scanned are set to their truth values

DNN

Input pulseseries features into CNN

Approaches for reconstruction

Tracks

- Use first-hit times for directional reconstruction (SANTA, SplineReco)
- Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
- Millipede works for high-energy tracks by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (EventGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

Cascades

- Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, Monopod, DirectFit)

Challenges in cascade reconstruction

Large distances between DOMs means not many detected photons
Small asymmetry means high dependence on ice modeling
Sheer number of photons difficult to simulate

1. Tabulate photon yields for a single ice model (Millipede/Monopod)

- Fast, table generation time-consuming

2. Directly propagate all photons for any ice model (DirectFit)

- Slow but accurate

Cascade orientation from full-waveform

Differences between bestfit and reversed-orientation from Monopod

Time-windows where PMT saturates or calibration failed are shaded

Photon amplitudes

Photon flux at different recievers as taken from photospline Cherenkov peaks visible nearby, falls off rapidly with distance

Minimization approaches

Given a likelihood $\mathcal{L}\left(\boldsymbol{\Theta} \mid \mathrm{X}_{\text {Data }}\right)$ as a function of $\boldsymbol{\Theta}=(x, y, z, \theta, \phi, E, t)$, want to find $\boldsymbol{\Theta}_{\mathbf{0}}$ that minimizes the negative likelihood

Need to explore 7D space which is challenging
> Monopod uses photon tables which allows for iterative gradient descent

- May not always find the global minimum
$>$ Can also brute force all possible directions (θ, ϕ) to reduce the minimization to only 5 dimensions (realtime alerts do this)

New cascade tables

With bfr-v2 MC and matching photosplines

Zenith distribution

With bfr-v2 amplitude-only treatment

Comparison to Monopod

Note: Latest event generator model trained on bfr-v1 ice model
Monopod using bfr-v2 splines

bfr-v2
icetray V01-00-02

Minimization approaches

Given a likelihood $\mathcal{L}\left(\boldsymbol{\Theta} \mid \mathrm{X}_{\text {Data }}\right)$ as a function of $\boldsymbol{\Theta}=(x, y, z, \theta, \phi, E, t)$, want to find $\boldsymbol{\Theta}_{\mathbf{0}}$ that minimizes the negative-likelihood

Need to explore 7D space which is challenging
> Millipede/Monopod uses photon tables which allows for iterative gradient descent

- Doesn't always find the global minimum
$>$ Can also brute force all possible directions (θ, ϕ) to reduce the minimization to only 5 dimensions
$>$ DirectFit attempts to find minimum using localized random search, randomly sampling points in (x, y, z, θ, ϕ) within a "search radius" that is refined iteratively

DirectFit minimization

Likelihood gradually improves from start to finish

Following this, MCMC approach to sample from posterior pdf

DirectFit with directional PDFs

$A B C$ outputs points on unit sphere (simulated event)

Detector

Can then fit a PDF on a sphere to those points

Ice modeling is important!

Bulk ice described by scattering and absorption coefficients as a function of depth \rightarrow these have been refined over time

Ice layers were found to be tilted [arXiv:1301.5361]

Ice was also discovered to be anisotropic [ICRC 2013, 0580]

Directional bias due to different ice models

Ice affects cascade reconstruction

Uncertainty estimation

Ice uncertainties affect reconstructed directions

Directional uncertainties important for point-source searches

With Millipede/Monopod full-sky scan, can draw a contour at some value of $\Delta l l h$ derived from resimulations with different ice models

With DirectFit, can reconstruct with different ice-models and combine into larger contour

Approaches for reconstruction

Tracks

- Use first-hit times for directional reconstruction (SANTA, SplineReco)
- Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, MuEx, Millipede, DirectFit)
- Millipede works for high-energy tracks by breaking it up into multiple cascades along the track due to muon stochastic energy losses
- ML+LLH approaches (EventGenerator)
- Likelihood-free inference (FreeDOM)
- Energy reco (TruncatedEnergy)

Cascades

- Use full-waveform information by fitting predicted light yields to what is actually seen (RetroReco, DirectReco, Monopod, DirectFit)
- ML (FLERCNN, DNN)
- ML+LLH approaches (EventGenerator)
- Likelihood-free inference (FreeDOM)

Summary

Reconstruction in IceCube is often a challenge

Many algorithms exist, separable into high-energy/lowenergy and track/shower

- Ice modeling is most important for cascades

Traditionally LLH-based approaches; recently a lot of $\mathrm{ML} /$ hybrid developments

Each has pros and cons ${ }^{\sim} y m m v$

New approaches always welcome!

References

SANTA: https://doi.org/10.1016/j.astropartphys.2011.01.003
SplineReco: https://docs.icecube.aq/icetray/main/projects/spline-reco/index.html
RetroReco: https://github.com/icecube/retro
DirectReco:
https://indico.cern.ch/event/593812/contributions/2499791/attachments/1468178/2270620/snowicki_IC_direc treco CAPtalk2017.pdf

MuEx: https://docs.icecube.aq/icetray/main/projects/mue/muex.html
TruncatedEnergy: https://docs.icecube.aq/icetray/main/projects/truncated energy/index.html
Millipede: https://docs.icecube.aq/icetray/main/projects/millipede/index.html
DirectFit: http://icecube.wisc.edu/~dima/work/WISC/papers/2013_ICRC/dir/icrc2013-0581.pdf
FLERCNN: https://github.com/jessimic/LowEnergyNeuralNetwork
DNN: https://icecube.wisc.edu/~mhuennefeld/docs/dnn reco/html/pages/about.html
EventGenerator:
https://events.icecube.wisc.edu/event/115/contributions/5977/attachments/5029/5566/2019 0918 Tokyo_c generator.pdf

FreeDOM:
https://events.icecube.wisc.edu/event/125/contributions/7228/attachments/5679/6634/fienberg freeDOM pl enary.pdf

Backups

Local effects

Hole-ice

- Refrozen central column with high scattering

DOM orientation

- Thick, support cable may impede direct photons if vertex is nearby
- A few DOMs may not be perfectly horizontal

Looking up the string

Local effects: DOM orientation and cable position

Without local effects
43, 21

$\begin{array}{ll}\text { With local effects } & \text { Bert data } \\ \text { Direct photon MC }\end{array}$
43, 21 Effective photon MC

Cascade vs track skymap

Uses splines from tabulated distributions

SpiceMie

SpiceMie

$16898 \quad \log \mid(n d o f=2765) \quad 20500.6$

Combining tracks and cascades

Hadronic showers at PeV energies may be accompanied by muons

- Outrun shower Cherenkov wavefront

Early pulses

Improvements in directional reconstruction

Cascade reco \rightarrow reco vertex/direction/energy \rightarrow Track reco w. vertex prior

Improvements in directions possible!

