Cosmic Rays

TAXABLE PARTY.

Paolo Desiati IceCube Bootcamp

desiati@wipac.wisc.edu

Madison, WI - June 13-17, 2022

Paolo Desiati

Indiata de la

Photo by Bryce Richter

The discovery of the Cosmic Rays

Radioactivity

 $R_{
m adioactive}$ decay transforms a nucleus by emitting different particles. In alpha decay, the nucleus releases a ⁴₂He nucleus -an alpha particle. In beta decay, the nucleus either emits an electron and antineutrino (or a positron and neutrino) or captures an atomic electron and emits a neutrino. A positron is the name for the antiparticle of the electron. Antimatter is composed of antiparticles. Both alpha and beta decays change the original nucleus into a nucleus of a different chemical element. In gamma decay, the nucleus lowers its internal energy by emitting a photon-a gamma ray. This decay does not modify the chemical properties of the atom.

Paolo Desiati

...looking for something else

... after the accidental discovery of X-rays by Röntgen in 1896 and of Uranium particle emission by Henri Bequerel that same year

... radioactivity was intensively studied as a natural phenomenon occurring inside Earth's crust

radiation - the emission of energy as electromagnetic waves or as moving subatomic particles, especially high-energy particles which cause ionization.

ionizing radiation

The discovery of the Cosmic Rays ...looking for something else

these invisible rays of energy produce electric currents in the air

electrometer capable of measuring weak electric currents (Pierre & Jacques Curie)

The discovery of the Cosmic Rays

...looking for something else

natural radioactivity from the

ground

does it mean that it is expected to decrease the higher we go?

4

Theodor Wulf (1868-1946)

electrometer to measure ionization currents from gamma rays

air ionization measurements on the ground and on top of Eiffel Tower

@300m - **15.7** ions/cm³ sec

expected - 6 ions/cm³ sec

@ground - **17.5** ions/cm³ sec

Domenico Pacini (1878-1934)

NOTA DI D. PACINI.

Le osservazioni eseguite sul mare nel 1910 ') mi conducevano a concludere che una parte non trascurabile della radiazione penetrante che si riscontra nell'aria, avesse origine indipendente dall'azione diretta delle sostanze attive contenute negli strati superiori della crosta terrestre.

Riferirò ora sopra ulteriori esperienze che confermano quella conclusione.

I risultati precedentemente ottenuti indicavano esistere, sulla superficie del mare, dove non è più sensibile l'azione del terreno, una causa ionizzante di tale intensità da non potersi spiegare esaurientemente considerando la nota distribuzione delle sostanze radioattive nell'acqua e nell'aria.

air ionization measurements on the ground, on the sea and under the sea

radiation strength decreases underwater. But isn't it closer to the ground below?

"Observations carried out on the sea during the year 1910 led me to conclude that a significant proportion of the pervasive radiation that is found in air had an origin that was independent of direct action of the active substances in the upper layers of the Earth's surface."

Victor Francis Hess (1883-1964)

air ionization measurements at high altitude, up to 5,000 meters (3 miles)

radiation strength increases with altitude

there must be a source of radiation from the sky...

... cosmic rays?

The discovery of the Cosmic Rays

The New York Times December 26, 1932

...the clarification

rays of particles?

COSMIC RAY RIVALS TO MEET IN DEBATE

Clash of Millikan and Compton Theories to Form High Point at Scientific Convention.

4,500 TO ATTEND SESSIONS

Atlantic City Meeting This Week to Hear 1,500 Papers-Gerard Swope. to Speak on Unemployment.

Special to THE NEW YORK TIMES. ATLANTIC CITY, Dec. 25.-The nature of cosmic rays, revolving around the specific question whether they enter the earth's atmosphere as electrically charged particles or as photons, will be the subject of debate between two of America's outstanding physicists at the annual meeting of the American Association for the Advancement of Science, which opens here Tuesday.

More than 4,500 scientists, laboratory workers and teachers of acience

cosmic rays are not **rays** after all but positively charged particles...

What are Cosmic Rays?

What are Cosmic Rays? Extensive Air Showers

Where do Cosmic Rays come from?

Paolo Desiati

Where do Cosmic Rays come from?

gamma ray sources to pinpoint where cosmic rays are accelerated hadronic cosmic ray sources must emit **neutrinos** as well

multi-messenger astronomy

How do we detect Cosmic Rays?

First interaction (usually several 10 km high)

- Air shower (particle cascade) evolves

Some of the particles reach the ground

> Measurement of particles with scintillation counters or with water Cherenkov counters

Low-energy muons under shallow shielding

High–energy muons deep underground (under ground, water, or ice)

ground-base detection

Measurement of fluorescence light (Fly's Eye)

Measurement of radio waves

underground detection

ENCE Low Energy Photon

Cosmic Ray Energy Spectrum

Paolo Desiati

Cosmic Ray Energy Spectrum

Cosmic Ray Energy Spectrum direct vs indirect observations

direct detection of cosmic rays

- small instrumentation at high-altitude or in orbit
- easy particle ID

indirect detection

large ground-based experiments

difficult particle ID (hadronic interactions)

Cosmic Ray mass composition direct observations

Relative Abundances (Si=1)

Paolo Desiati

17

The IceCube Observatory The Instrumentation

Digital Optical Module (DOM)

with 10" PMT & local DAQ electronics

Detecting Cosmic Rays

The IceCube Observatory Detecting Cosmic Rays

Cosmic Rays with IceTop

Pure Protons, cos0>0.95

Cosmic Rays with IceTop all-particle energy spectrum

Cosmic Rays with IceTop & IceCube elemental composition

W Paolo Desiati

Cosmic Rays with IceTop elemental composition

Cosmic Rays with IceCube arrival direction distribution

Relative Intensity

Median energy of cosmic ray particles ~ 20 TeV

Cosmic Rays with IceCube arrival direction distribution

IceCube Collaboration - PoS(ICRC2021)320

Relative Intensity

it changes as a function of energy

26

Cosmic Rays Anisotropy with HAWC - IceCube

AWC Observatory rates day and night, pro d of view for the observ HAWC is located at 4,100 m

All-Sky Anisotropy of Cosmic Rays at 10 TeV

Cosmic Rays Anisotropy with HAWC - IceCube

HAWC COLLABORATION AND ICECUBE COLLABORATION

without dipole, quadrupole, and octupole components

their origin is unknown and the subject of multi-messenger astrophysics

- Cosmic Rays are atomic nuclei sweeping across the Universe up to ultra-high energy
- cosmic rays arriving on Earth bring information about the medium they crossed

- GeV-scale cosmic rays used to probe solar wind and interplanetary magnetic field
- TeV-scale cosmic rays can be used to probe the heliosphere's boundary with the ISM

backup slides

Cosmic Ray Energy Spectrum Low Energy

Local Sources?

Paolo Desiati

