Multi-PMT elongated sensors in ppc

Performance studies for a next-generation optical sensor for IceCube-Gen2

The IceCube-Gen2 Collaboration

E-mail: shimizu@hepburn.s.chiba-u.ac.jp, aya@hepburn.s.chiba-u.ac.jp, alexander.kappes@uni-muenster.de

We present performance studies of a segmented optical module for the IceCube-Gen2 detector. Based on the experience gained in sensor development for the IceCube Upgrade, the new sensor will consist of up to eighteen 4 inch PMTs housed in a transparent pressure vessel, providing homogeneous angular coverage. The use of custom molded optical 'gel pads' around the PMTs enhances the photon capture rate via total internal reflection at the gel-air interface. This contribution presents simulation studies of various sensor, PMT, and gel pad geometries aimed at optimizing the sensitivity of the optical module in the face of confined space and harsh environmental conditions at the South Pole.

Corresponding authors: Nobuhiro Shimizu1*, Aya Ishihara1, Alexander Kappes2

¹ ICEHAP, Chiba University, Chiba, Japan

² Institut für Kernphysik, Westfälische Wilhelms-Universität Münster

* Presenter

Table 1: Information on the various optical modules

Name	PMT diameter [inch]	Number of PMTs	Glass diameter [mm]	Glass height [mm]
Gen1 DOM	10	1	330	330
mDOM	3.15	24	356	411
D-Egg	8	2	300	534
mEgg	4	14	300	534
LOM-16	4	16	313	444
LOM-18	4	18	305	540

TRC20

N

_

Figure 1: Schematic view of the optical modules. Gen-1 DOMs are used for the IceCube array, and mDOM and D-Eggs will be deployed in the IceCube-Upgrade holes. mEgg and LOM-18 are two designs for IceCube Gen2 studied here.

Table 2: Effective area of optical modules (preliminary)

Name	Effective area (400 nm) [cm ²]	Cherenkov-averaged effective area * [Ratio to Gen-1 DOM]	
Gen1 DOM	34 - 37*	1	
mDOM	108	3.5 - 4.0	
D-Egg	94	2.8 - 3.2	
mEgg †	103	3.2 - 3.6	
$LOM-16^{\dagger}$	105	3.2 - 3.7	
$LOM-18^{\dagger}$	118	3.6 - 4.2	

* Variation comes from a difference of the treatment of the detection efficiency of PMTs.

T If high quantum efficiency PMT is available, these improve by 30%.

Configuration files: om.conf

# name	module	area	beta	Rr	Rz	num
Default	-1	12.88	0.5	0.1651	0.1651	1
mDOM	40	51.32	1	0.178	0.2055	24

Modules area assumed spheroids (single-axis ellipsoids) specified with *Rr* and *Rz*. Pancake oversizing strategy is enabled when oversize>1

TODO: Add cylindrical shape (enabled with negative Rz)

DONE: Enable sensor rotation

TODO: is the module structure already in GCD (or elsewhere)? I found PMT coordinates replicated for each optical module in global detector coordinates. Is this optimal?

	120	41 00	0 5	0 150	0 267	2
DEdd	120	41.08	0.5	0.150	0.20/	2

Default describes IceCube/IceTop/PDOM sensors can split into separate entries

requires entry for "Default" because areas are relative to "Default", since the number of photons per m of bare muon track is currently hardcoded for DOM

areas here taken from talk by Nobuhiro Shimizu (Consideration of the effective areas of optical modules for ICRC 2021 contribution)

areas are Cherenkov-weighted and solid-angleaveraged (integrated would be ok too) – prefer this to minimize effects of errors in angular and wavelength acceptance curves (think Liouville theorem)

beta describes a single-parameter angular sensitivity behavior of a single PMT (same for all PMTs but can be changed to define per-PMT if needed) need this per PMT (not per module)

1 1 111.11 0.24 1 2 19.228 0.16 1 3 85.746 0.19 1 4 65.143 0.34 1 5 132.931 0.3	¹⁸⁴ 9527 9882 7785 79851	guration files: dx.dat, om.m	ap and om.dirs	
1122 76 45 -1 1122 77 45 -1 1122 78 45 -1	dx.dat	table of azimuthal directions to cable		
1122 79 45 -1 1122 80 45 -1	om.map	Specifies sensor types (can also be read from GCD)	0 -1 0 0 1 -0.990439 -0.137952 0 2 -0 990439 0 137952 0	
1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 1 10 20	 Wavelength dependence is specified in files wv.dat and wv.rde for nominal and high-QE DOMs. Chosen via "type" specified along with an RDE value in file eff-f2k. TODO: add more wavelength dependence tables as needed. I think these should be Cherenkov-waited and normalized to 1, overall impact being expressed via the "area" in map.conf 2 -0.987688 -0.082242 3 -0.987688 -0.082242 5 -0.987688 -0.082242 5 -0.987688 0.0822425 6 -0.987688 0.0822425 7 -0.966393 -0.220117 8 -0.966393 -0.220117 9 -0.966393 -0.220117 10 -0.966393 -0.220117 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11			
93 105 40 93 106 120 93 107 120 93 108 40 93 109 110 93 110 120 93 111 40	TODO: add suppo meaningful area Also need a para it can be express	ort for reading all new files from GCD (need it to contain), and an additional radius parameter (so, <i>area, Rr</i> , and <i>Rz</i>). meter that specifies wavelength dependence table, unless ed as a combination of nominal/high-QE and module type	635 0.987688 -0.0822425 -0.133071 636 0.987688 -0.0822425 0.133071 637 0.987688 0.0822425 -0.133071 638 0.987688 0.0822425 0.133071 639 0.990439 -0.137952 0 640 0.990439 0.137952 0 641 1 0 0	
93 112 40 93 113 200 93 114 220	OM.dirs	table of uniform directions on a sphere	Α	

Need this for initialization (to find the maximum value of angular sensitivity)

Schematic view of OM with Digital and Optical Analog Capability

Figure 62: Schematic profile view of a generic Digital Optical Module, showing pressure sphere, optical coupling gel, PMT, signal processing electronics board, LED flasher board, PMT base, and electrical penetrator.

9= r. 1-B2 $h_1 = \frac{Br}{4c\theta} \quad h_2 = \frac{Br}{sin\theta}$ COS(0)>0.33 HD $X - area = \frac{a(\frac{h}{2}) = a = r^2 \left(d - \frac{8in2d}{2}\right)}{\pi r^2 \left(1 - \beta^2\right) \cos \theta - a \left(\frac{\beta/4p\theta}{\pi 1 - \beta^2}\right) \cos \theta + a \left(\frac{\beta}{8in\theta}\right) d = a\cos \frac{h}{2}$

DOM PMT

g

Figure 1: The shape of D-Egg. The height of the glass is 534 mm and the diameter at the equator is 300 mm.

 $R = (x_1, y_1)$ 9 == -019 Xiz (X1)

To calculate acceptance chance for a photon that lands on the spheroid sensor we need the sum of all visible cross-sections of PMTs divided by the crosssectional area of the sensor for that direction.

Maximum of ratio of PMT area sum to sensor area determines the "surface efficiency" of the sensor, and the photons are simulated to uniformly cover the area of the sensor. The angular sensitivity is applied thereafter.

The solid-angle averaged and "flat" areas are easily related to each other at initialization. Still, recommend using average effective sensor area as input (to minimize errors due to angular sensitivity interpretation and simulation) 10

	Configuring in "/data/user/dima/I3/ice-full/" Configuring icemodel in "/data/user/dima/I3/ice-full/" Configuring tiltmodel in "/data/user/dima/I3/ice-full/" Configuring holeice from "/data/user/dima/I3/ice-full/as.dat"
	Using oversize as set with OVSZ=1
	Configured: $xR=1$ eff=1 sf=0.35 g=0.9
Hole ice	With nole ice: XH=0.5 sca=0.03 (0.35,0.9) abs=100
	Ice anisotropy is K(130)=1,1,1
	New Ice anisotropy is 1.82212,0.740818,0.740818
	Renorm. NI anisotropy 1.69545,0.689318,0.689318 - SPICE BFRV2
	Ice absorption anisotropy scaling is 0
	Initialized BFR diffusion patterns; s_eff=0.00246854 m ⁻¹
Г	Configured 642 test directions
	OM Type 1 with 1 PMTs added (x1) relative max surface density of sensor
om.cont	OM Type -1 with 1 PMTs added (x1) [relative max surface density of sensor
	OM Type 40 with 24 PMTs added (x1.10952) (max over all possible directions)
L	Loaded 121072 random multipliers
	Using fixed positions of hole ice columns from str_f2kl
cobloc	Loaded 1/8/3 cable positions
	Found 5160 OMs of type -1
	Found 9760 OMs of type 40 om.map (or GCD)
L	Warning: string 71 too close to cell boundary
	Loaded 14920 DOMs (21x19)
	Loaded 80x110 2d dust laver points
	Ice laver thickness: UNIFORM
	Loaded 42 wavelenth points
	Loaded 171 ice layers
	Air bubble parameters: 11.7 1350 1400

Response to isotropic flux of muons and electron cascades, IceCube with all sensors replaced

hits (millions of)

Simulation of Sunflower_240m_v3.2.2 (Tianlu)

SPICE BFRv2 Direct Hole Ice

ppc simulation with

2d Tilt Maps Cable Shadow

mDOMs/pDOM areas of 3.98 from N. Shimizu cf. 2.24(?) in clsim sim.

if sensor == I30MGeo.OMType.PDOM:
 return 29.2*I3Units.cm2
elif sensor == I30MGeo.OMType.DEgg:
 return 43.3*I3Units.cm2
elif sensor == I30MGeo.OMType.mDOM:
 return 65.4*I3Units.cm2

- Elongated and/or multi-PMT sensor treatment has been added to ppc (on git)
- Some TODO items to be resolved in the next few weeks, but should be possible to use now with external configuration files (in resources/ice/gen2 – copy these into your PPCTABLESDIR directory)
- Collecting info for configuration of sensors within icetray: geometry of sensor (incl. PMT configuration), wavelength sampling tables, space-angle-averages areas, and angular sensitivity curves
- The sensor data for the above need to come from dedicated studies including internal sensor structure, glass/gel transmission, quantum efficiencies, etc. (Nobuhiro or Kotoyo?)

1) # of Cherenkas protons in dl is dre. dr (emitted per meter of bare man track) 2) ice propagation results in a lors (fraction) Sunction that adds time delay compose http and arrival direction and landing coordinates on a OM sensor: F(P,P,t) (P) 3 Quaitim efficiency, &Macceptance, and losses due to glass and gel transmission are all together another fraction & (B,F) All of these depends on wavelength >, but since photons do not drange wavelength, we have: $\frac{\text{Total # of pulses}}{\text{per } \Delta \lambda, \Delta \overline{\lambda}, \Delta \overline{\lambda},$ = F(2, 2, t). dSQ(2, 2, X). dN dX } cherenkov-ice propagation da photon sampling tunction

Frank-Jamm formula (# of Cherenkov photons emitted by bare muon track) $\frac{d^2 E}{dx \, d\omega} = \frac{e^2}{c^2} \left(1 - \frac{1}{\beta^2 n^2}\right) \, \omega \, d\omega$ $E = N \cdot hco$ $co = \frac{2\pi c}{hc}$ $d = \frac{e^2}{hc}$ $\Rightarrow d\left(\frac{dN}{dx}\right) = 2\pi d\left(1 - \frac{1}{\beta^2 n^2}\right) \frac{d\lambda}{\beta^2}$ Init fraction fresults in pulses (incl sub-threshold) Then f. 1m² = eff. area if average eff. area is known, (over solidangle) and PMT ang. cens. is known and PMT geometry inside OH is known and PMT seometry inside OH is known =) can calculate eff. area for given direction OM is simulated as a shape (e.g., spherold) cross-sectional area of which is A(O) Then: # of Cherenkov pulses is $d(\frac{dw}{dx})$. Eff. Area (0) Since $A(\theta)$ does not dependent, recommend "Chevenbou-weighted eff. area"+ wowelength acceptance Lo Sd(#). EffAria/Sd(dw) dependence area

The direction of propagation of the Cherenkov light does not need correction, but the velocity does. Using an extensive table of data [5] and interpolating linearly in $\log \lambda$ for phase refractive index for ice, we generated a polynomial (with wavelength λ in micrometers)

$$n(\lambda) = 1.55749 - 1.57988\lambda + 3.99993\lambda^2 - 4.68271\lambda^3 + 2.09354\lambda^4 \quad (3)$$

in the region 0.3 μ m to 0.6 μ m for which Cherenkov light contributes to the signal of a muon. For group refractive index, we generated a polynomial for the fractional increase

$$\frac{n_g - n}{n} = \frac{\lambda}{n} \left| \frac{\mathrm{d}n}{\mathrm{d}\lambda} \right| = 0.227106 - 0.954648\lambda + 1.42568\lambda^2 - 0.711832\lambda^3$$
(4)

