
Triggered CORSIKA

And Multiprocess Server

Kevin Meagher

IceCube Simulation Workshop

October 18, 2021

How CORSIKA used to work

IceTrayCORSIKA

Executable

Generates Primary Particle Spectrum

 (Energy, Direction Position)

Simulates air shower interactions

Propagate Muons

CORSIKA

BINARY

FORMAT

Propagate Photons

Detector Simulation

I3MCTree I3PhotonGPU

PROPOSAL CLSim

Simulates

Detector Response

CORSIKA files are generated by a separate CORSIKA binary

IceTray then processes in a linear fashion by each module

First Muons are propagated by by PROPOSAL,

Then Photons are processed by CLSim using the GPU

The entire I3Photon sequence is stored in memory before
being converted to the binned I3MCPE format 2

I3Photon = Lots of Memory

I3MCPE = Uses less memory

Why is CORSIKA so hard to produce?

Low Energy:

• CORSIKA shower files are created separately and
transferred at the start of the job which saturates IO

Medium Energy:

• CORSKIA showers need more CPU than GPU which is
an inefficient use of our cluster resources (CPUs sit idle
while waiting for GPUs to finish)

High Energy:

• Large showers push the memory limits on nodes.
CLSim needs to store the entire event (both the MCTree
and I3Photons) in memory. Power-law statistics require
that we have to allocate memory for very rare events.

3

IceTray

Propagate Muons

CORSIKA

Server

Propagate Photons

Detector Simulation

I3MCPE

I3PrimaryInjector

Triggered CORSIKA and Multiprocess
Server CLSim

CLSimServer

GPU

CLSimClient

PROPOSAL

Generates Primary

Cosmic Ray Particles

(Similar to MuonGun)

Simulates

Detector Response

Propagate Air Shower

CLSimClient passes
individual particles from the
MCTree to the CORSIKA
Server, to PROPOSAL to
the CLSimServer

I3MCTree

I3MCPE are created
directly from the output
of each individual
CLSim propagation

Saving memory

4

What do we gain from this?

No Need to break up CORSIKA jobs by energy:

• Low Energy:

• No need to generate CORSIKA files separately
(prevents IO bottleneck)

• Medium Energy:

• Multiple instances of IceTray can share a CLSimServer

resulting in better CPU utilization

• High Energy:

• Individual particles are passed from CORSIKA to
PROPOSAL to CLSim and binned I3MCPE are made
for each particle from CLSim rather than the entire
event. This significantly reduces the memory footprint

• Multiple instance of IceTray can run in the same cluster
job

5

Event More Benefits:

Oversampling and Other Tricks

• Cosmic ray air shower primary can be generated
according to arbitrary spectral and spatial distributions

• Generate primaries directly on the detector cylinder

before cosmic ray propagation (similar to MuonGun)

• Different CORSIKA configuration cards can be sent to

different events

• Set muon energy threshold based on the inclination of

the shower

• CORSIKA propagation of a shower can be under-sampled

based on shower development

• Kill events with low leading energy muon

6

Other ideas which have been

proposed to bias simulation

• Oversample coincident events: eg 1 for coincident
showers, 10-4 for single showers

• Only populate EM component if the shower hits IceTop.

• Oversample IceCube muon “Lanes”

• Tau analysis: oversample charmed mesons

• ESTES: oversample veto hotspots

• MESE/cascades: oversample based on expected charge

in the veto region

• Cosmic rays: oversample high PT muons

• Force neutrino interaction in air shower

7

I3PrimaryInjector Module

• Utilizes S-Frame object to keep track of
generation surface

• Uses SampleImpactRay() to sample
on the surface of the cylinder

• Samples the energy from a different
power-law for each primary type

• Creates I3MCTree with primary

• Creates an I3ShowerBiasMap and puts

it in the frame (so CORSIKA knows how
to bias showers)

8

server_sim.py

One Script to run the entire shish kabob is in simprod-scripts

• Creates I3CLSimServer

• Runs tray with:

• I3PrimaryInjector

• PolyplopiaSegment

• I3CLSimClientModule with the following propagators:

• CorsikaService as a CosmicEventGenerator

• PROPOSAL and I3CMC as propagators

• I3CLSimLightSourceToStepConverterAsync

Facilities to run multiple trays which connect to the same
I3CLSimServer existed in the past and will be reenabled soon

9

Dataset 21889

• First large scale dataset using
Triggered CORSIKA

• Primary energy: 30 TeV to 1 EeV

• 100,000 jobs each with 300,000

showers

• Muon bias of 10-3

• ~70% complete

10

• 20789: Conventional CORSIKA dataset from 2016

• Baseline: Latest release run with conventional CORSIKA script

• 21889: New triggered CORSIKA

11

• 20789: Conventional CORSIKA dataset from 2016

• Baseline: Latest release run with conventional CORSIKA script

• 21889: New triggered CORSIKA

12

• 20789: Conventional CORSIKA dataset from 2016

• Baseline: Latest release run with conventional CORSIKA script

• 21889: New triggered CORSIKA

13

• 20789: Conventional CORSIKA dataset from 2016

• Baseline: Latest release run with conventional CORSIKA script

• 21889: New triggered CORSIKA

14

Performance

15

Biasing on the energy of the leading muon in the air shower
results in a 20x increase in the simulate lifetime per GPU time

SimWeights for Weighting

• Available on GitHub as a small
pure python module

• Does not access database

• Will work with any combination

of generation surfaces

• Uses S-Frames to determine the

number of files in sample

• Also works with older CORSIKA

and NuGen

16

Proposal for PPC and CLSim

• The current terminology is confusing: when people say
CLSim it can be very confusing.

• A lot of what is in the clsim project has nothing to do with
OpenCL code

• Propose we move I3CLSimServer, I3CLSimCLient, etc to
sim-services (or a new project) and drop the “CL” from the
name.

• The project clsim will only contain actual OpenCL code

• Put CUDASim in a new project

• Now we can write a ppc implementation of

I3SimStepToPhotonConverter which only depends on sim-
services

17

Current Status

• Triggered CORSIKA can solve a number of issues
associated with simulation production

• Triggered CORSIKA produces results which are
comparable with the reference dataset

• A 20x increase in GPU utilization is achieved in real world
benchmarks

• Weighting is handled by a new pure python module:
SimWeights

18

